Please wait a minute...
材料导报  2022, Vol. 36 Issue (11): 21030318-6    https://doi.org/10.11896/cldb.21030318
  无机非金属及其复合材料 |
回收轮胎聚合物纤维混凝土高温损伤超声特性研究
陈猛, 颜鑫, 陈建淞, 孙影杰
东北大学资源与土木工程学院,沈阳 110819
Study on Ultrasonic Characteristics of High Temperature Damage of Recycled Tyre Polymer Fiber Reinforced Concrete
CHEN Meng, YAN Xin, CHEN Jiansong, SUN Yingjie
School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
下载:  全 文 ( PDF ) ( 4828KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了研究回收轮胎聚合物纤维(RTPF)和高温作用对混凝土损伤超声特性的影响,对不同温度(20 ℃、105 ℃、250 ℃、400 ℃、600 ℃)作用后不同掺量(0 kg/m3、0.6 kg/m3、1.2 kg/m3、2.4 kg/m3、4.8 kg/m3)的RTPF混凝土试件进行超声检测,分析超声波通过混凝土试件的声速、波形、频谱及其能量分布的变化规律。结果表明:高温作用后混凝土中超声波声速降低,波形发生畸变,主频幅值降低,超声波能量向低频段聚集;RTPF混凝土抗压强度的变化趋势和超声特性反映的混凝土损伤演化趋势相同;温度达到RTPF熔点后,掺量为1.2 kg/m3的RTPF混凝土的抗压强度最大,声速最大,低频段的超声波能量占比最小;SEM测试表明高温后RTPF发生软化和熔化,提高了混凝土的透气能力,减小了孔隙蒸气压力,减小了混凝土高温爆裂损伤。研究成果可为RTPF混凝土高温损伤机理研究提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈猛
颜鑫
陈建淞
孙影杰
关键词:  轮胎纤维  混凝土  高温  超声波  损伤    
Abstract: In order to study the influences of recycled tyre polymer fibers (RTPF) and high temperature treatment on the ultrasonic characteristics of concrete da-mage, this work applied the ultrasonic method to test the concrete specimen with various fiber dosages (0 kg/m3, 0.6 kg/m3, 1.2 kg/m3, 2.4 kg/m3, 4.8 kg/m3) under different temperature (20 ℃, 105 ℃, 250 ℃, 400 ℃, 600 ℃), and then analyzed the change rules of acoustic velocity, waveform, spectrogram and energy distribution when the ultrasonic wave passed through the concrete specimen. The experimental results indicate that after high temperature, there has been a decrease in the acoustic velocity and the amplitude of main frequency of concrete with different fiber dosages; meanwhile, the waveform is distorted and the energy of ultrasonic is concentrated in the low-frequency stage. The change trend of compressive strength of RTPF reinforced concrete is the same as the damage trend reflected by ultrasonic characteristics. After the temperature reaches the melting point of RTPF, the compressive strength and the acoustic velocity of RTPF concrete with 1.2 kg/m3 fiber dosages get the largest, and the proportion of ultrasonic energy in low frequency band gets the smallest; SEM test shows that RTPF softens and melts after high temperature treatment, which can improve the air permeability of concrete, reduce the pore steam pressure, and then make the high-temperature burst damage of concrete reduced. The research results can provide a reference for the study of high-temperature damage mechanism of RTPF reinforced concrete.
Key words:  tyre fiber    concrete    high temperature    ultrasonic wave    damage
出版日期:  2022-06-10      发布日期:  2022-06-09
ZTFLH:  TU528.34  
基金资助: 辽宁省自然科学基金资助项目(2020-MS-089);中央高校基本科研业务专项资金资助项目(N2001005);国家级大学生创新创业训练项目(S201910450028)
通讯作者:  cmwhut@163.com   
作者简介:  陈猛,东北大学资源与土木工程学院副教授,分别于2004年、2008年和2011年在武汉理工大学获得学士、硕士和博士学位。主要研究方向为超高性能混凝土、纤维混凝土动态力学性能及增强增韧机理、钢与混凝土组合结构。发表学术论文30余篇,包括Cement and Concrete Composites、 Construction and Building Materials、《工程力学》等。
引用本文:    
陈猛, 颜鑫, 陈建淞, 孙影杰. 回收轮胎聚合物纤维混凝土高温损伤超声特性研究[J]. 材料导报, 2022, 36(11): 21030318-6.
CHEN Meng, YAN Xin, CHEN Jiansong, SUN Yingjie. Study on Ultrasonic Characteristics of High Temperature Damage of Recycled Tyre Polymer Fiber Reinforced Concrete. Materials Reports, 2022, 36(11): 21030318-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030318  或          http://www.mater-rep.com/CN/Y2022/V36/I11/21030318
1 Mindeguia J C, Pimienta P, Noumowe A, et al. Cement and Concrete Research, 2010, 40(3), 477.
2 Li Y, Pimienta P, Pinoteau N, et al. Cement and Concrete Composites, 2019, 99, 62.
3 Kalifa P, Menneteau F O, Quenard D. Cement and Concrete Research, 2000, 30(12), 1915.
4 Li Y, Zhang Y, Yang E, et al. Cement and Concrete Research, 2019, 116, 168.
5 Liu X, Yuan Y, Ye G, et al. Journal of Tongji University (Natural Science Edition), 2007, 35(7), 959(in Chinese).
柳献, 袁勇, 叶光, 等. 同济大学学报 (自然科学版), 2007, 35(7), 959.
6 Liu X, Ye G, De S Y, et al. Cement and Concrete Research, 2008, 38(4), 487.
7 Zhang D, Dasari A, Tan K, et al. Cement and Concrete Research, 2018, 113, 169.
8 Thomas B, Gupta R. Renewable and Sustainable Energy Reviews, 2016, 54, 1323.
9 Ramarad S, Khalid M, Ratnam C T, et al. Progress in Materials Science, 2015, 72, 100.
10 Vahid A, Togay O. Construction and Building Material, 2015, 94, 73.
11 Baricevic A, Jelcic R M, Pezer M, et al. Cement and Concrete Compo-sites, 2018, 91, 29.
12 Baricevic A, Pezer M, Jelcic R, et al. Construction and Building Mate-rials, 2018, 176, 135.
13 Chen M, Zhong H, Zhang M. Cement and Concrete Composites, 2020, 105, 103441.
14 Chen M, Chen W, Zhong H, et al. Cement and Concrete Composites, 2019, 98, 95.
15 Huang S S, Angelakopoulos H, Pilakoutas K, et al. Applications of Structural Fire Engineering, 2015, 56, 1.
16 Chen M, Chen X Z, Chen G Y, et al. Journal of Northeastern University (Natural Science Edition), 2018, 39(10), 1458(in Chinese).
陈猛, 陈希卓, 陈耕野, 等. 东北大学学报(自然科学版), 2018, 39(10), 1458.
17 Liu J L, Xu J Y, Dong Z G, et al. Concrete,2016,316(2),56(in Chinese).
刘俊良, 许金余, 董宗戈, 等. 混凝土, 2016, 316(2), 56.
18 Ren W B, Xu J Y, Zhu Z J, et al. Concrete, 2013, 284 (6), 1(in Chinese).
任韦波, 许金余, 朱宗金, 等. 混凝土, 2013, 284(6), 1.
19 Hiremath P N, Yaragal S C. Construction and Building Materials, 2018, 169, 499.
20 Zheng W Z, Li H Y, Wang Y. Journal of Building Structures, 2012, 33 (9), 119(in Chinese).
郑文忠, 李海艳, 王英. 建筑结构学报, 2012, 33 (9), 119.
21 Eidan J, Rasoolan I, Rezaeian A, et al. Construction and Building Materials, 2019, 198, 195.
22 Rivera O, Long W, Weiss J, et al. Cement and Concrete Research, 2016, 90, 43.
23 Park S M, Jang J G, Lee N K, et al. Cement and Concrete Research, 2016, 89, 72.
24 Li M. Study on fire damage of high strength concrete and its comprehensive evaluation. Ph.D. Thesis, Southeast University, China, 2005(in Chinese).
李敏. 高强混凝土受火损伤及其综合评价研究. 博士学位论文, 东南大学, 2005.
[1] 王伟, 郭鸽鸽, 丁士杰, 程鹏, 高原, 王快社. 钛合金表面抗氧化玻璃涂层研究进展[J]. 材料导报, 2022, 36(Z1): 21110265-8.
[2] 李胤, 宋远佳, 刘春华. 基于热成像的CFRP损伤检测与演化规律研究综述[J]. 材料导报, 2022, 36(Z1): 22010161-9.
[3] 王鹏. 机场道面混凝土性能提升研究[J]. 材料导报, 2022, 36(Z1): 22040083-4.
[4] 屠艳平, 陈国夫, 程子扬, 程书凯. 纳米SiO2对再生骨料沥青混凝土性能的影响[J]. 材料导报, 2022, 36(Z1): 22030139-5.
[5] 陈燕强, 钱春香, 张健. 材料参数对清水混凝土表观气孔控制的影响[J]. 材料导报, 2022, 36(Z1): 22030021-9.
[6] 唐凌霄, 姚华彦, 徐马云龙, 刘玉亭, 陈传明, 周璟, 吴叙言. 蒸压加气混凝土板研究与应用综述[J]. 材料导报, 2022, 36(Z1): 22030150-4.
[7] 张娜, 周健. 高温处理后玄武岩纤维水泥基复合材料应变率效应研究[J]. 材料导报, 2022, 36(Z1): 20040024-5.
[8] 马帅, 金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用[J]. 材料导报, 2022, 36(Z1): 22030217-5.
[9] 王俊辉, 黄悦, 杨国涛, 魏琦安, 刘文卓. 再生混凝土抗压性能研究进展[J]. 材料导报, 2022, 36(Z1): 21100033-9.
[10] 陈瑞明, 向阳开, 梁路, 赵毅. 冻融循环与预应力共同作用下混凝土抗压强度试验研究[J]. 材料导报, 2022, 36(Z1): 21120009-5.
[11] 周万良, 邓欢. 基于NaOH激发矿渣和硅酸盐水泥的功能梯度混凝土的抗氯离子渗透性能[J]. 材料导报, 2022, 36(Z1): 21100082-4.
[12] 王子仪, 张武龙, 王瑞燕, 邓伟新, 吴沂. 石蜡热工介质对混凝土绝热温升的影响[J]. 材料导报, 2022, 36(Z1): 21080274-5.
[13] 杜青铉, 张宇航, 孙伟豪, 刘蕊, 庄尧量, 夏军武. 基于混合模型的煤矸石透水混凝土透水系数预测[J]. 材料导报, 2022, 36(Z1): 22040077-5.
[14] 李翠芹, 裴玉冰, 范华, 郭维华, 王天剑, 吴比, 巩秀芳. 火电机组高中压转子选材的研究进展[J]. 材料导报, 2022, 36(Z1): 22010097-7.
[15] 刘泊天, 于翔天, 张静静, 姚子洋, 高鸿, 邢焰. 航天器舱外应用材料服役寿命末期耐辐射损伤机制研究[J]. 材料导报, 2022, 36(Z1): 20070234-4.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed