Please wait a minute...
材料导报  2022, Vol. 36 Issue (18): 21010236-7    https://doi.org/10.11896/cldb.21010236
  金属与金属基复合材料 |
换向轧制对铜晶粒尺寸高温热稳定性的影响
谢功园1, 王轶2, 陈宇强1,*, 刘文辉1, 潘素平3, 宋宇峰1, 刘阳1, 谭欣荣1
1 湖南科技大学新能源储存与转换先进材料湖南省重点实验室,湖南 湘潭 411201
2 浙江惟精新材料有限公司,浙江 绍兴 312300
3 中南大学高等研究中心,长沙 410083
Effect of Alternative Rolling on Grain Size Thermal Stability of Copper at High Temperature
XIE Gongyuan1, WANG Yi2,CHEN Yuqiang1,*, LIU Wenhui1, PAN Suping3, SONG Yufeng1, LIU Yang1, TAN Xinrong1
1 Hunan Provincial Key Laboratory of New Energy Storage and Conversion of Advanced Materials,Hunan University of Science and Technology, Xiangtan 411201,Hunan, China
2 Zhejiang Winjoy New Material Co., Ltd., Shaoxing 312300, Zhejiang, China
3 Advanced Research Center, Central South University, Changsha 410083, China
下载:  全 文 ( PDF ) ( 6503KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 铜是重要的导电导热材料,其在高温下的晶粒尺寸热稳定性一直是目前新能源、电子通讯等领域的研究热点。本工作利用换向轧制对纯铜的织构特征进行调控,并结合电子背散射衍射(EBSD)分析和金相组织观察(OM),研究了其对纯铜高温保温过程中织构演变及晶粒长大行为的影响。结果表明:随着轧变形量从0%增加到95%时,在单向和换向轧制下纯铜的Cube织构{100}〈001〉逐渐减少,而Brass织构{110}〈112〉和S织构{123}〈634〉显著增加。相比于单向轧制,相同变形量条件下换向轧制明显弱化了S织构并使Cube晶粒分布更加均匀。换向轧制能明显提高纯铜在高温下的晶粒尺寸热稳定性。经换向轧制的纯铜在650 ℃/10 min和950 ℃/10 min高温保温后的晶粒明显细化。这种细化效果随着轧制变形量的增加和保温温度的升高而变得更加显著,其原因可能与S织构的减少以及Cube晶粒的均匀分布有关。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢功园
王轶
陈宇强
刘文辉
潘素平
宋宇峰
刘阳
谭欣荣
关键词:  换向轧制  纯铜  织构  晶粒尺寸    
Abstract: As copper is a main thermal-conductivity material, its grain size thermal stability at high temperature has been a present hotspot in the fields of new energy resource, electronic communication, etc. In this work, an alternative rolling method was applied to control the texture characteri-stics of pure copper, and its effects on the grain growth and texture evolution of copper exposed at high temperatures were also investigated using electron backscatter diffraction (EBSD) analysis and optical microscopy (OM). The results show that, with rolling deformation increasing from 0% to 95%, the volume fraction of Cube texture ({100}〈001〉) in copper deformed by both unidirectional and alternative rolling gradually decreases, while those of Brass texture ({110}〈112〉) and S texture ({123}〈634〉) increase. Compared with unidirectional rolling, alternative rolling is conducive to decrease S texture and leads to a more uniform distribution of Cube texture in copper under the same deformation amount. The grain size thermal stability of copper at high temperature is obviously enhanced by alternative rolling. Besides, alternative rolling refines the grain size obviously as the copper is exposed at 650 ℃ for 10 min and 950 ℃ for 10 min. This refinement effect becomes greater with the increase of rolling deformation and holding temperature. Its main reason is probably the decrease of S texture and the homogenous distribution of Cube orientated grains.
Key words:  alternative rolling    copper    texture    grain size
收稿日期:  2022-09-25      出版日期:  2022-09-25      发布日期:  2022-09-26
ZTFLH:  TG146.1  
基金资助: 国家自然科学基金(52075166);湖南省科技创新人才计划 (2019RS2064)
通讯作者:  *yqchen1984@163.com   
作者简介:  谢功园,2018年6月毕业于湖南科技大学潇湘学院,获工学学士学位。现为湖南科技大学材料科学与工程学院硕士研究生,在陈宇强副教授的指导下进行研究。主要研究方向为金属加工工艺与性能。陈宇强,博士,副教授,湖南科技大学研究生院副院长。主要研究方向为金属加工工艺与性能、损伤机理以及微结构表征。主持国家自然科学基金、校企合作科研项目、产学研成果转化项目等科研项目30余项,在Materials Science and Engineering AJournal of Alloys and Compounds等学术刊物发表学术论文60余篇,获得授权专利10余项、软件注册权8项。
引用本文:    
谢功园, 王轶, 陈宇强, 刘文辉, 潘素平, 宋宇峰, 刘阳, 谭欣荣. 换向轧制对铜晶粒尺寸高温热稳定性的影响[J]. 材料导报, 2022, 36(18): 21010236-7.
XIE Gongyuan, WANG Yi,CHEN Yuqiang, LIU Wenhui, PAN Suping, SONG Yufeng, LIU Yang, TAN Xinrong. Effect of Alternative Rolling on Grain Size Thermal Stability of Copper at High Temperature. Materials Reports, 2022, 36(18): 21010236-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010236  或          http://www.mater-rep.com/CN/Y2022/V36/I18/21010236
1 Pan Y, Xiao S Q, Lu X, et al. Journal of Alloys and Compounds, 2019, 782, 1015.
2 Hu H Q, Xu C, Yang L J, et al. Materials Reports A:Review Papers, 2018, 32(2), 453(in Chinese).
胡号旗, 许赪, 杨丽景, 等. 材料导报:综述篇, 2018, 32(2), 453.
3 Li Z, Xiao Z, Jiang Y B, et al. The Chinese Journal of Nonferrous Me-tals, 2019, 29(9), 2009(in Chinese).
李周, 肖柱, 姜雁斌, 等. 中国有色金属学报, 2019, 29(9), 2009.
4 Fan A L, Zhang S, Huang L,et al. Chinese Journal of Rare Metals, 2013, 37(5), 726(in Chinese).
范爱玲, 张姗, 黄浪, 等. 稀有金属, 2013, 37(5), 726.
5 Zhao Y Y, Zhang Y M, Song K X.Journal of Henan University of Science and Technology (Natural Science), 2017, 38(1), 6(in Chinese).
赵亚永, 张彦敏, 宋克兴.河南科技大学学报(自然科学版), 2017, 38(1), 6.
6 Terasaki N.U.S.patent application, US20190135706, 2019.
7 Terasaki N, Nagatomo Y.U.S.patent, US10016956,2018.
8 Akhtar S S, Kareem L T, Arif A F M, et al. Ceramics International, 2017, 43(6), 5236.
9 Kabaar A B, Buttay C, Dezellus O, et al. Microelectronics Reliability, 2017, 79, 288.
10 Schulz-Harder J.Microelectronics Reliability, 2003, 43(3), 359.
11 Mei Y, Lu G Q, Chen X, et al. Journal of Electronic Materials, 2011, 40(10), 2119.
12 Chua S T, Siow K S.Journal of Alloys and Compounds, 2016, 687, 486.
13 Liu A K, Lu C J, Duan G C,et al. Copper Engineering, 2018, 150(2),13(in Chinese).
刘爱奎, 鲁长建, 段广超, 等. 铜业工程, 2018, 150(2),13.
14 Zhu M Y, Guo X H. China Metal Bulletin, 2020(6),88(in Chinese).
朱明益, 郭晓辉. 中国金属通报, 2020(6), 88.
15 Li M M, Zhang L Q, Wang W J, et al. Heat Treatment of Metals,2018,43(8),23(in Chinese).
李明茂, 张乐清, 王文静, 等. 金属热处理, 2018, 43(8), 23.
16 Atwater M A, Roy D, Darling K A, et al. Materials Science and Engineering A, 2012, 558, 226.
17 Zhong J W, Zhang H, Chen Y X,et al. The Chinese Journal of Nonferrous Metals, 2016, 26(5), 1092(in Chinese).
钟江伟, 张鸿, 陈彦旭, 等. 中国有色金属学报, 2016, 26(5), 1092.
18 Fu D J. Nonferrous Metals, 2003, 55(2), 7(in Chinese).
付大军. 有色金属, 2003, 55(2), 7.
19 Mishnev R, Shakhova I, Belyakov A, et al. Materials Science and Engineering A, 2015, 629,29.
20 Ma J K, Wang Y H, Yang Y T, et al. Materials Reports B:Research Papers,2015,29(11),96(in Chinese).
马健凯, 王宥宏, 杨雨潭, 等. 材料导报:研究篇, 2015, 29(11), 96.
21 Lugo N, Llorca N, Sunol J J, et al. Journal of Materials Science, 2010, 45(9), 2264.
22 Volokitina I E.Metal Science and Heat Treatment,2020, 62(3),253.
23 Yu H, Wang L, Chai L J, et al. Materials Characterization, 2019, 153,34.
24 Zhang Z W, Wang J L, Zhang Q L, et al. Materials Reports A:Review Papers, 2017, 31(1), 116(in Chinese).
章震威, 王军丽, 张清龙, 等. 材料导报:综述篇,2017,31(1),116.
25 Song J, Wang Y X, Dang J B, et al. Hot Working Technology, 2016, 45(18), 205(in Chinese).
宋江, 王迎鲜, 党景波, 等. 热加工工艺, 2016, 45(18), 205.
26 Ridha A A, Hutchinson W B. Acta Metallurgica, 1982, 30(10),1929.
27 Liu Y S, Zhao R, Liang Z D.Acta Metallurgica Sinica, 1990, 26(3),126(in Chinese).
刘燕声, 赵骧, 梁志德. 金属学报, 1990, 26(3),126.
28 Goli F, Jamaati R.Materials Characterization, 2018, 142, 352.
29 Duggan B J, Lucke K, Kohlhoff G, et al. Acta Metallurgica et Materialia, 1993, 41(6),1921.
30 Hong S H, Lee D N.Materials Science and Engineering A, 2003, 351(1-2), 133.
[1] 付兵, 项利, 乔家龙, 刘静, 仇圣桃. 薄板坯连铸连轧流程制备低温Hi-B钢织构的演变及Goss晶粒的发展[J]. 材料导报, 2022, 36(9): 20120130-8.
[2] 汪勇, 李光强, 刘玉龙, 高洋, 郭小龙, 朱诚意. Nb微合金化对取向硅钢常化板中析出物特征及组织和织构的影响[J]. 材料导报, 2022, 36(7): 20110126-6.
[3] 许骏杰, 康嘉杰, 岳文, 周永宽, 朱丽娜, 付志强, 佘丁顺. 纳秒激光制备Fe基非晶合金涂层表面织构的疏水性研究[J]. 材料导报, 2022, 36(7): 21120134-6.
[4] 刘艳辉, 马鸣龙, 张奎, 李兴刚, 李永军, 石国梁, 袁家伟. 镁合金电磁屏蔽性能的研究进展[J]. 材料导报, 2022, 36(18): 20070297-6.
[5] 张嘉颖, 袁玖玮, 张玉凤, 娄紫微, 周文礼, 张晓娟, 彭麟, 徐燕, 徐建明, 杨瑰婷, 和泉充. 顶部热籽晶熔融织构生长法制备的单畴GdBCO块材的超导性能[J]. 材料导报, 2022, 36(15): 21010223-6.
[6] 董万龙, 曹睿, 蒋勇, 杨飞, 黄义芳, 徐晓龙, 陈剑虹. Cr-Mo-V耐热钢焊条电弧焊焊缝金属低温冲击韧性研究[J]. 材料导报, 2022, 36(15): 20120001-5.
[7] 赵堃, 孛海娃, 艾桃桃, 廖仲尼, 丁镠, 冯小明. 非等原子Alx(FeCoNiCr)88-xMn12高熵合金的微观组织及力学性能[J]. 材料导报, 2022, 36(14): 22040007-7.
[8] 李艳, 周增林, 何学良, 陈文帅, 惠志林. 轧制钼材制备过程织构演变的研究现状[J]. 材料导报, 2022, 36(12): 20090340-6.
[9] 鲍键, 李全安, 陈晓亚, 张迁, 陈籽佚. 挤压镁合金的研究进展[J]. 材料导报, 2022, 36(10): 20090073-12.
[10] 仇伟夷, 祝祥辉, 黄伟九, 杨绪盛, 汪鑫. 晶界特征对AA2099铝锂合金疲劳加载分层断裂影响探究[J]. 材料导报, 2022, 36(10): 21030256-5.
[11] 宋金涛, 刘海涛, 宋克兴, 安士忠, 程楚, 华云筱, 周延军, 张凌亮, 王国杰, 田安福, 杨璐瑶. 稀土铈与磷相互作用对纯铜晶粒尺寸和导电性能的影响[J]. 材料导报, 2021, 35(z2): 329-332.
[12] 王伟, 王萌, 蔡军, 张浩泽, 史亚鸣, 张晓锋, 黄海广, 王快社. EB炉熔炼TC4钛合金轧制过程中的组织演变与力学性能[J]. 材料导报, 2021, 35(8): 8140-8145.
[13] 刘晓欢, 李彦生, 满意, 王金辉, 徐瑞. 高压扭转制备的Mg-Sm-Ca合金组织演变及时效硬化行为[J]. 材料导报, 2021, 35(6): 6120-6125.
[14] 王丽娜, 何承绪, 孟利, 杨佳欣, 张宁, 郭小龙, 胡卓超, 李国保, 王福明. 升温速率对冷轧超薄取向硅钢再结晶行为的影响[J]. 材料导报, 2021, 35(18): 18170-18175.
[15] 樊立峰, 秦美美, 岳尔斌, 肖丽俊, 何建中. 新能源汽车对无取向硅钢的技术挑战[J]. 材料导报, 2021, 35(15): 15183-15188.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed