Effect of Alternative Rolling on Grain Size Thermal Stability of Copper at High Temperature
XIE Gongyuan1, WANG Yi2,CHEN Yuqiang1,*, LIU Wenhui1, PAN Suping3, SONG Yufeng1, LIU Yang1, TAN Xinrong1
1 Hunan Provincial Key Laboratory of New Energy Storage and Conversion of Advanced Materials,Hunan University of Science and Technology, Xiangtan 411201,Hunan, China 2 Zhejiang Winjoy New Material Co., Ltd., Shaoxing 312300, Zhejiang, China 3 Advanced Research Center, Central South University, Changsha 410083, China
Abstract: As copper is a main thermal-conductivity material, its grain size thermal stability at high temperature has been a present hotspot in the fields of new energy resource, electronic communication, etc. In this work, an alternative rolling method was applied to control the texture characteri-stics of pure copper, and its effects on the grain growth and texture evolution of copper exposed at high temperatures were also investigated using electron backscatter diffraction (EBSD) analysis and optical microscopy (OM). The results show that, with rolling deformation increasing from 0% to 95%, the volume fraction of Cube texture ({100}〈001〉) in copper deformed by both unidirectional and alternative rolling gradually decreases, while those of Brass texture ({110}〈112〉) and S texture ({123}〈634〉) increase. Compared with unidirectional rolling, alternative rolling is conducive to decrease S texture and leads to a more uniform distribution of Cube texture in copper under the same deformation amount. The grain size thermal stability of copper at high temperature is obviously enhanced by alternative rolling. Besides, alternative rolling refines the grain size obviously as the copper is exposed at 650 ℃ for 10 min and 950 ℃ for 10 min. This refinement effect becomes greater with the increase of rolling deformation and holding temperature. Its main reason is probably the decrease of S texture and the homogenous distribution of Cube orientated grains.
作者简介: 谢功园,2018年6月毕业于湖南科技大学潇湘学院,获工学学士学位。现为湖南科技大学材料科学与工程学院硕士研究生,在陈宇强副教授的指导下进行研究。主要研究方向为金属加工工艺与性能。陈宇强,博士,副教授,湖南科技大学研究生院副院长。主要研究方向为金属加工工艺与性能、损伤机理以及微结构表征。主持国家自然科学基金、校企合作科研项目、产学研成果转化项目等科研项目30余项,在Materials Science and Engineering A、Journal of Alloys and Compounds等学术刊物发表学术论文60余篇,获得授权专利10余项、软件注册权8项。
引用本文:
谢功园, 王轶, 陈宇强, 刘文辉, 潘素平, 宋宇峰, 刘阳, 谭欣荣. 换向轧制对铜晶粒尺寸高温热稳定性的影响[J]. 材料导报, 2022, 36(18): 21010236-7.
XIE Gongyuan, WANG Yi,CHEN Yuqiang, LIU Wenhui, PAN Suping, SONG Yufeng, LIU Yang, TAN Xinrong. Effect of Alternative Rolling on Grain Size Thermal Stability of Copper at High Temperature. Materials Reports, 2022, 36(18): 21010236-7.
1 Pan Y, Xiao S Q, Lu X, et al. Journal of Alloys and Compounds, 2019, 782, 1015. 2 Hu H Q, Xu C, Yang L J, et al. Materials Reports A:Review Papers, 2018, 32(2), 453(in Chinese). 胡号旗, 许赪, 杨丽景, 等. 材料导报:综述篇, 2018, 32(2), 453. 3 Li Z, Xiao Z, Jiang Y B, et al. The Chinese Journal of Nonferrous Me-tals, 2019, 29(9), 2009(in Chinese). 李周, 肖柱, 姜雁斌, 等. 中国有色金属学报, 2019, 29(9), 2009. 4 Fan A L, Zhang S, Huang L,et al. Chinese Journal of Rare Metals, 2013, 37(5), 726(in Chinese). 范爱玲, 张姗, 黄浪, 等. 稀有金属, 2013, 37(5), 726. 5 Zhao Y Y, Zhang Y M, Song K X.Journal of Henan University of Science and Technology (Natural Science), 2017, 38(1), 6(in Chinese). 赵亚永, 张彦敏, 宋克兴.河南科技大学学报(自然科学版), 2017, 38(1), 6. 6 Terasaki N.U.S.patent application, US20190135706, 2019. 7 Terasaki N, Nagatomo Y.U.S.patent, US10016956,2018. 8 Akhtar S S, Kareem L T, Arif A F M, et al. Ceramics International, 2017, 43(6), 5236. 9 Kabaar A B, Buttay C, Dezellus O, et al. Microelectronics Reliability, 2017, 79, 288. 10 Schulz-Harder J.Microelectronics Reliability, 2003, 43(3), 359. 11 Mei Y, Lu G Q, Chen X, et al. Journal of Electronic Materials, 2011, 40(10), 2119. 12 Chua S T, Siow K S.Journal of Alloys and Compounds, 2016, 687, 486. 13 Liu A K, Lu C J, Duan G C,et al. Copper Engineering, 2018, 150(2),13(in Chinese). 刘爱奎, 鲁长建, 段广超, 等. 铜业工程, 2018, 150(2),13. 14 Zhu M Y, Guo X H. China Metal Bulletin, 2020(6),88(in Chinese). 朱明益, 郭晓辉. 中国金属通报, 2020(6), 88. 15 Li M M, Zhang L Q, Wang W J, et al. Heat Treatment of Metals,2018,43(8),23(in Chinese). 李明茂, 张乐清, 王文静, 等. 金属热处理, 2018, 43(8), 23. 16 Atwater M A, Roy D, Darling K A, et al. Materials Science and Engineering A, 2012, 558, 226. 17 Zhong J W, Zhang H, Chen Y X,et al. The Chinese Journal of Nonferrous Metals, 2016, 26(5), 1092(in Chinese). 钟江伟, 张鸿, 陈彦旭, 等. 中国有色金属学报, 2016, 26(5), 1092. 18 Fu D J. Nonferrous Metals, 2003, 55(2), 7(in Chinese). 付大军. 有色金属, 2003, 55(2), 7. 19 Mishnev R, Shakhova I, Belyakov A, et al. Materials Science and Engineering A, 2015, 629,29. 20 Ma J K, Wang Y H, Yang Y T, et al. Materials Reports B:Research Papers,2015,29(11),96(in Chinese). 马健凯, 王宥宏, 杨雨潭, 等. 材料导报:研究篇, 2015, 29(11), 96. 21 Lugo N, Llorca N, Sunol J J, et al. Journal of Materials Science, 2010, 45(9), 2264. 22 Volokitina I E.Metal Science and Heat Treatment,2020, 62(3),253. 23 Yu H, Wang L, Chai L J, et al. Materials Characterization, 2019, 153,34. 24 Zhang Z W, Wang J L, Zhang Q L, et al. Materials Reports A:Review Papers, 2017, 31(1), 116(in Chinese). 章震威, 王军丽, 张清龙, 等. 材料导报:综述篇,2017,31(1),116. 25 Song J, Wang Y X, Dang J B, et al. Hot Working Technology, 2016, 45(18), 205(in Chinese). 宋江, 王迎鲜, 党景波, 等. 热加工工艺, 2016, 45(18), 205. 26 Ridha A A, Hutchinson W B. Acta Metallurgica, 1982, 30(10),1929. 27 Liu Y S, Zhao R, Liang Z D.Acta Metallurgica Sinica, 1990, 26(3),126(in Chinese). 刘燕声, 赵骧, 梁志德. 金属学报, 1990, 26(3),126. 28 Goli F, Jamaati R.Materials Characterization, 2018, 142, 352. 29 Duggan B J, Lucke K, Kohlhoff G, et al. Acta Metallurgica et Materialia, 1993, 41(6),1921. 30 Hong S H, Lee D N.Materials Science and Engineering A, 2003, 351(1-2), 133.