Please wait a minute...
材料导报  2021, Vol. 35 Issue (18): 18170-18175    https://doi.org/10.11896/cldb.20120030
  金属与金属基复合材料 |
升温速率对冷轧超薄取向硅钢再结晶行为的影响
王丽娜1,2, 何承绪3, 孟利4, 杨佳欣5, 6, 张宁4, 郭小龙5, 6, 胡卓超5, 李国保5, 王福明1
1 北京科技大学冶金与生态工程学院,北京 100083
2 北京科技大学天津学院材料科学与工程系,天津 301830
3 先进输电技术国家重点实验室,全球能源互联网研究院有限公司,北京 102209
4 钢铁研究总院,北京 100081
5 宝钢股份中央研究院硅钢所,上海 200000
6 国家硅钢工程技术研究中心,武汉 430080
Effect of Heating Rate on Recrystallization Behavior in Cold-rolled Ultra-thin Grain-oriented Silicon Steel
WANG Lina1,2, HE Chengxu3, MENG Li4, YANG Jiaxin5,6, ZHANG Ning4, GUO Xiaolong5,6, HU Zhuochao5, LI Guobao5, WANG Fuming1
1 School of Metallurgy and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Department of Materials Science and Engineering, School of Tianjin, University of Science and Technology Beijing, Tianjin 301830, China
3 State Key Laboratory of Advanced Transmission Technology, Global Energy Internet Research Institute Co., LTD., Beijing 102209, China
4 Central Iron and Steel Research Institute, Beijing 100081, China
5 Baosteel Central Research Institute, Shanghai 200000, China
6 National Engineering Research Center for Silicon Steel, Wuhan 430080, China
下载:  全 文 ( PDF ) ( 8683KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用EBSD技术对比分析了升温速率对冷轧超薄取向硅钢再结晶行为的影响。结果表明,冷轧超薄带中再结晶形核位置、再结晶织构类型受升温速率的影响不大,主要取决于形变组织;剪切带、{111}〈112〉取向晶粒晶界、形变带和形变不均匀区均为再结晶的形核位置,剪切带的再结晶形核优势更为明显;再结晶晶粒取向以Goss({110}〈001〉)取向为主,同时存在{210}〈001〉、{310}〈001〉以及一定比例的杂乱取向。然而,升温速率显著影响Goss织构的强度及退火样品的组织均匀性;慢速升温条件下,Goss织构比例和锋锐度降低,说明回复导致不同织构的形变组织储存能差异减小,降低了Goss取向的形核优势;快速升温条件下,剪切带内的Goss晶核具有更大的形核优势,吞并临近的形变组织完成再结晶,形成更强和锋锐的Goss织构。此外,快速升温可提高再结晶完成后的组织均匀性、降低平均晶粒尺寸。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王丽娜
何承绪
孟利
杨佳欣
张宁
郭小龙
胡卓超
李国保
王福明
关键词:  超薄取向硅钢  初次再结晶  升温速率  织构  Goss    
Abstract: The effect of heating rate on the recrystallization behavior of ultra-thin oriented silicon steel was analyzed by using EBSD technique. The results show that the nucleation sites and the texture components of recrystallized grains were mainly determined by the deformed microstructure, not significantly affected by heating rate. The nucleation sites of recrystallized grains were observed in the deformed matrix, including the shear bands, grain boundaries between two {111}〈112〉 grains, deformation bands and heterogeneous deformation zones. The preferential recrystallization nucleation is more obvious in the shear bands. Goss({110}〈001〉), {210}〈001〉 and {310}〈001〉 became the main texture in the annealed grain oriented silicon steel sheet, and a certain proportion of hybrid orientation were found. Heating rate was a direct factor which inf-luence the intensity of Goss and the microstructure uniformity. Enhanced recovery by low heating rate reduced the stored energy difference among texture components, which reduced the nucleation advantage of Goss orientation, thus the intensity and sharpness of Goss were weakened. The nucleation advantage of Goss was promoted during high heating rate, sharp Goss texture was strengthened after complete recrystallization. In addition, in case of rapid heating, the average grain size after recrystallization was reduced and the uniform distribution was improved.
Key words:  ultra-thin grain-oriented silicon steel    primary recrystallization    heating rate    texture    Goss
               出版日期:  2021-09-25      发布日期:  2021-09-30
ZTFLH:  TG142.77  
基金资助: 国家重点研发计划项目(2016YFB0300300;2017YFB0903901);天津市教委科研计划项目(2020KJ078)
作者简介:  王丽娜,2018年毕业于北京科技大学,获得材料科学与工程专业博士学位。2019年7月至今,在北京科技大学冶金与生态工程学院进行博士后研究工作,主要从事超薄取向硅钢的研究。
孟利,钢铁研究总院,高级工程师,硕士研究生导师。2008年毕业于北京科技大学,获材料学专业博士学位,同年进入北京科技大学材料科学与工程学院工作。2015年至今就职于钢铁研究总院,主要从事电工硅钢、轻金属及合金等金属材料研究开发工作,重点研究材料的各向异性及织构的原理及应用。在国内外学术期刊发表文章80余篇。
引用本文:    
王丽娜, 何承绪, 孟利, 杨佳欣, 张宁, 郭小龙, 胡卓超, 李国保, 王福明. 升温速率对冷轧超薄取向硅钢再结晶行为的影响[J]. 材料导报, 2021, 35(18): 18170-18175.
WANG Lina, HE Chengxu, MENG Li, YANG Jiaxin, ZHANG Ning, GUO Xiaolong, HU Zhuochao, LI Guobao, WANG Fuming. Effect of Heating Rate on Recrystallization Behavior in Cold-rolled Ultra-thin Grain-oriented Silicon Steel. Materials Reports, 2021, 35(18): 18170-18175.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20120030  或          http://www.mater-rep.com/CN/Y2021/V35/I18/18170
1 Matsuo M.ISIJ International, 1989, 29(10), 809.
2 Oda Y, Kohno M, Honda A.Journal of Magnetism and Magnetic Mate-rials, 2008, 320(20), 2430.
3 Lobanov M L, Redikul'tsev A A, Rusakov G M, et al.Physics of Metals and Metallography, 2011, 111(5), 479.
4 Moses A J.Scripta Materialia, 2012, 67(6), 560.
5 Gao X H, Qi K M, Qiu C L.Materials Science and Engineering A, 2006, 430(1-2), 138.
6 Muraki M, Ozaki Y, Obara T, et al.Journal of Materials Engineering and performance, 1996, 52(3), 323.
7 He C X, Yang F Y, Meng L, et al.Journal of Magnetism and Magnetic Materials, 2017, 439(1), 397.
8 Kumano T, Ohata Y, Fujii N, et al.Journal of Magnetism and Magnetic Materials, 2006, 304(2), 602.
9 Nakashima S, Takashima K, Harase J.Journal of the Japan Institute of Metals and Materials, 1991, 55(8), 898.
10 Liang R Y, Yang P, Mao W M.Journal of Materials Engineering, 2017, 45(6), 87 (in Chinese).
梁瑞洋, 杨平, 毛卫民.材料工程, 2017, 45(6), 87.
11 Lobanov M L, Rusakov G M, Redikul'tsev A A.The Physics of Metals and Metallography, 2013, 114(7), 609.
12 Nakano M, Ishiyama K, Arai K I, et al.Journal of Applied Physics, 1997, 81(8), 4098.
13 Nakano M, Ishiyama K, Arai K I.IEEE Transactions on Magnetics, 1995, 31(6), 3886.
14 Nakano M, Ishiyama K, Arai K I, et al.IEEE Transactions on Magnetics, 1997, 33(5), 3754.
15 Gao X H, Qi K M, Qiu C L, et al.Journal of Northestern University (Na-tural Science), 2005, 26(1), 259(in Chinese).
高秀华, 齐克敏, 邱春, 林等.东北大学学报(自然科学版), 2005, 26(1), 259.
16 Tu Y C, He C X, Meng L, et al.Journal of Materials Engineering, 2020, 48(1), 61(in Chinese).
涂蕴超, 何承绪, 孟利, 等.材料工程, 2020, 48(1), 61.
17 He C X, Tu Y C, Meng L, et al.Materials Reports A: Review Papers, 2019, 33(3), 1027 (in Chinese).
何承绪, 涂蕴超, 孟利, 等.材料导报:综述篇, 2019, 33(3), 1027.
18 Dorner D, Zaefferer S, Raabe D.Acta Materialia, 2007, 55(7), 2519.
19 Wang Y P, Ling Z A, Song H Y, et al.Journal of Magnetism and Magnetic Materials, 2020, 499, 166290.
20 Zhang N, Meng L, Zhang B, et al.Journal of Magnetism and Magnetic Materials, 2021, 517, 167385.
21 Ushigami Y, Okazaki Y, Abe N, et al.Journal of Materials Engineering and Performance, 1995, 4(4), 435.
22 Mehdi M, He Y L, Erik J, et al.Steel research International, 2019, 90(7), 1.
23 Park N J, Joo H D, Park J T.ISIJ International, 2013, 53(1), 125.
24 Park J T, Szpunar J A, Cha S Y.ISIJ International, 2003, 43(10), 1611.
[1] 王伟, 王萌, 蔡军, 张浩泽, 史亚鸣, 张晓锋, 黄海广, 王快社. EB炉熔炼TC4钛合金轧制过程中的组织演变与力学性能[J]. 材料导报, 2021, 35(8): 8140-8145.
[2] 刘晓欢, 李彦生, 满意, 王金辉, 徐瑞. 高压扭转制备的Mg-Sm-Ca合金组织演变及时效硬化行为[J]. 材料导报, 2021, 35(6): 6120-6125.
[3] 樊立峰, 秦美美, 岳尔斌, 肖丽俊, 何建中. 新能源汽车对无取向硅钢的技术挑战[J]. 材料导报, 2021, 35(15): 15183-15188.
[4] 梁锦钰, 冯运莉, 段阳会, 李杰. 高温退火时间对含铌低温取向电工钢二次再结晶行为的影响[J]. 材料导报, 2021, 35(12): 12141-12146.
[5] 何承绪, 马光, 陈新, 杨富尧, 程灵, 杨勇杰, 胡卓超, 孟利. 低温薄规格取向硅钢初次再结晶组织对二次再结晶行为的影响[J]. 材料导报, 2020, 34(Z1): 457-461.
[6] 王昕宇, 徐春, 黎雨, 庞灵欢, 王斌君, 陈建斌. 电脉冲拉伸下5052铝合金的变形行为及微观组织和织构演变[J]. 材料导报, 2020, 34(24): 24097-24103.
[7] 钟兵, 邢志国, 王海斗, 吕晓仁, 黄艳斐, 郭伟玲, 张仲. 织构化表面摩擦学性能的研究进展[J]. 材料导报, 2020, 34(23): 23171-23178.
[8] 赵磊杰, 马立峰, 韩廷状, 范沁红. 变形镁合金轧制成形研究进展[J]. 材料导报, 2020, 34(21): 21135-21145.
[9] 王小鹏, 李晓延, 吴奇, 徐洲. 织构对6061-T6铝合金X射线应力测试精度的影响机理[J]. 材料导报, 2020, 34(20): 20081-20085.
[10] 郭丽丽, 苑菁茹, 汪建强, 李永兵. ZK60镁合金中空型材挤压成形的有限元模拟及组织和性能[J]. 材料导报, 2020, 34(2): 2072-2076.
[11] 刘晓燕, 张琪, 高飞龙, 杨西荣, 罗雷, 柳奎君. 复合变形制备超细晶工业纯钛的研究进展[J]. 材料导报, 2020, 34(19): 19111-19116.
[12] 秦芳诚, 齐会萍, 李永堂, 武永红, 亓海全, 刘崇宇. 环形零件短流程铸辗复合成形技术研究进展[J]. 材料导报, 2020, 34(19): 19152-19165.
[13] 程灵, 韩钰, 马 光, 孟利, 杨富尧, 陈新, 董瀚. 特高压直流换流阀饱和电抗器用超薄取向硅钢涂层制备与性能评估[J]. 材料导报, 2020, 34(18): 18139-18144.
[14] 杨西荣, 郝凤凤, 罗雷, 刘晓燕, 马炜杰, 王立元. 大角度ECAP变形模具制备纯钛的变形织构演化模拟[J]. 材料导报, 2020, 34(16): 16077-16082.
[15] 石晓辉, 曹祖涵, 张敏, 郭瑞鹏, 乔珺威. 基于位错密度分析的Ti-8Al-1Mo-1V钛合金片层组织在热轧及退火过程中的演变机制[J]. 材料导报, 2020, 34(12): 12101-12104.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed