Please wait a minute...
材料导报  2020, Vol. 34 Issue (21): 21135-21145    https://doi.org/10.11896/cldb.19090002
  金属与金属基复合材料 |
变形镁合金轧制成形研究进展
赵磊杰1,2, 马立峰1,2,*, 韩廷状3, 范沁红1
1 太原科技大学机械工程学院,太原 030024;
2 太原科技大学重型机械教育部工程研究中心,太原 030024;
3 太原科技大学材料科学与工程学院,太原 030024
Research Progress of Wrought Magnesium Alloy Rolling Forming
ZHAO Leijie1,2, MA Lifeng1,2,*, HAN Tingzhuang3, FAN Qinhong1
1 School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
2 Heavy Machinery Engineering Research Center of the Ministry Education, Taiyan University of Science and Technology, Taiyuan 030024,China
3 School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
下载:  全 文 ( PDF ) ( 15689KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着工业化进程的加快,综合性能高的材料愈发受到国内外学者的青睐。镁合金作为最轻的结构件材料且具有比强度和比刚度高等优势,在汽车、航天航空等领域受到越来越多的关注。当采用传统铸造和压铸工艺批量化生产镁合金时,由于存在铸造过程中常见的缺陷,其综合性能受限,往往不能满足工业生产的需求。而通过轧制既能实现镁合金板材连续化生产,也能在一定程度上提高其综合性能。但是,由于镁合金属于密排六方体的特殊晶体结构材料,独立滑移系相比体心立方和面心立方的晶体结构材料少,导致镁合金板材在轧制变形过程中的成形性差,也导致镁合金板材轧后的成形性差,主要体现在:(1)轧制过程中板材极易发生边裂;(2)轧后板材的延伸率、强度提升不显著;(3)轧后不易获得高强度、高塑性的板材。目前国内外研究者主要通过三类(九种)轧制工艺方式来提高镁合金板材的成形性:(1)高速轧制,在线热轧,立轧,交叉轧制-抑制边裂;(2)异步轧制,交叉辊轧制,等径角轧制-附加剪切力轧制,弱化基面织构;(3)累积叠轧,衬板轧制-细化晶粒,提高强度的同时获得高塑性。本文主要从镁合金板材的边裂抑制、基面织构弱化、晶粒细化为出发点,以提高镁合金成形性为研究方向,综述了上述九种轧制工艺方式对镁合金板材微观组织、织构演变和变形机制的影响,实现了对镁合金板材上述性能缺点的优化,提高了其成形性。同时对未来轧制变形镁合金的研究方向进行了展望,为得到无边裂、高强高塑镁合金板材提供了参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵磊杰
马立峰
韩廷状
范沁红
关键词:  镁合金  轧制工艺  边裂  织构  成形性能    
Abstract: ith the acceleration of industrialization, materials with high comprehensive performance are increasingly favored by domestic and foreign researchers. Magnesium alloy is the lightest structural material and has the advantages of high specific strength and stiffness, it has attracted more and more attention in the fields of vehicle, aerospace and other fields. When the traditional casting and die casting processes are used to produce magnesium alloy, its comprehensive properties are limited due to the common defects in the casting process, which often fail to meet the requirements of industrial production. Continuous production of magnesium alloy plates can be achieved through rolling and the comprehensive properties of magnesium alloy plates can be improved. However, as magnesium alloy is a special crystal structure material with hexagonal close pack, the independent slip system is less than other crystal structure materials with body centered cubic and face centered cubic, which leads to the poor formability of magnesium alloy plates in the rolling deformation process and after rolling,which is mainly reflected in: (1) edge crack is easy to occur in the rolling process; (2) after rolling, the elongation and strength properties of the plates are not significantly improved; (3) after rolling, it is not easy to obtain the plates with excellent combination of high strength and high plastic properties. At present, domestic and foreign researchers mainly improve the formability of magnesium alloy plates by three kinds of nine rolling processes: (1) high speed rolling, on-line heating rolling, vertical rolling, cross rolling-suppress edge cracking; (2) differential speed rolling, cross-roll rolling, equal channel angular rolling-additional shear force for rolling weakens the basal texture; (3) accumulative roll bonding, hard-plate rolling-fine grain, improve strength and obtain high plasticity. The paper mainly from the magnesium alloy plates edge crack suppression, weakening basal texture, grain refinement as a starting point, in order to improve the formability of magnesium alloy as the research direction, the effects of the above nine rolling processes on microstructure, texture evolution and deformation mechanism of magnesium alloy plates and the defect of magnesium alloy plates were optimized and the formability was improved. Meanwhile, the research direction of the future rolling deformation of magnesium alloy is prospected, which provides a reference for obtaining the magnesium alloy plate with no edge crack, high strength and high plastic alloy plates.
Key words:  magnesium alloy    rolling process    edge cracks    texture    formability
               出版日期:  2020-11-10      发布日期:  2020-11-17
ZTFLH:  TG335  
基金资助: 国家自然科学基金-联合基金(U1610253);山西省重点研发计划(201603D111004);山西省“1331工程”重点学科建设计划经费;山西省专利推广实施资助专项
作者简介:  赵磊杰,男,1995年10月生,就读于太原科技大学机械工程专业,研究方向为镁合金板材轧制。
马立峰,男,1977年8月生,太原理工大学博士毕业。太原科技大学机械工程学院院长、教授、博士研究生导师,主要从事冶金工艺与大型冶金设备现代设计方法领域的研究。主持和完成国家自然科学基金重点项目、面上与青年项目3项,被评为江苏省“双创团队领军人才”,江苏省“高层次创新创业人才”和江苏省333人才等。目前已发表论文40余篇(SCI/EI收录30篇),已授权发明专利12项。
引用本文:    
赵磊杰, 马立峰, 韩廷状, 范沁红. 变形镁合金轧制成形研究进展[J]. 材料导报, 2020, 34(21): 21135-21145.
ZHAO Leijie, MA Lifeng, HAN Tingzhuang, FAN Qinhong. Research Progress of Wrought Magnesium Alloy Rolling Forming. Materials Reports, 2020, 34(21): 21135-21145.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19090002  或          http://www.mater-rep.com/CN/Y2020/V34/I21/21135
[1] Joost W J. JOM, 2012, 64(9), 1032.
[2] Patel H A, Chen D L, Bhole S D, et al. Materials Science and Enginee-ring A, 2010, 528(1), 208.
[3] Tahreen N, Chen D L, Nouri M, et al. Materials Science & Engineering: A, 2014, 594, 235.
[4] Liu D, Liu Z Y, Wang E. Materials Science and Engineering: A, 2014, 612, 208.
[5] Zhang H, Yan Y, Fan J F, et al. Materials Science and Engineering: A, 2014, 618, 540.
[6] Chen W Z, Zhang W C, Qiao Y D, et al. Journal of Alloys and Compounds, 2016, 665, 13.
[7] Agnew S R, Duygulu O. International Journal of Plasticity, 2005, 21(6), 1161.
[8] Yu H H, Xin Y C, Chapuis A, et al. Scientific Reports, 2016, 6, 29283.
[9] Li M M, Wu B L, Zhang L, et al. Hot Working Technology, 2017, 46(3), 38(in Chinese).
李苗苗, 武保林, 张利, 等. 热加工工艺, 2017, 46(3), 38.
[10] Liu H Q, Tang D, Hu S P, et al. The Chinese Journal of Nonferrous Metals, 2012, 22(12), 3293(in Chinese).
刘华强, 唐荻, 胡水平, 等. 中国有色金属学报, 2012, 22(12), 3293.
[11] Liu D, Liu Z Y, Wang E. Materials Science & Engineering A, 2014, 612, 208.
[12] Huang X S, Suzuki K, Chino Y, et al. Journal of Alloys and Compounds, 2015, 632, 94.
[13] Amjad J, Frank C. Journal of Magnesium and Alloys, 2019, 7, 27.
[14] Rao X X, Wu Y P, Pei X B, et al. Materials Science & Engineering A, 2019, 754, 112.
[15] Jia W T, Ma L F, Ma Z Y, et al. Rare Metal Materials and Engineering, 2016, 45(1), 152(in Chinese).
贾伟涛, 马立峰, 马自勇, 等. 稀有金属材料与工程, 2016, 45(1), 152.
[16] Zhang D F, Dai Q W, Fang L, et al. Transactions of Nonferrous Metals Society of China, 2011, 21(5), 1112.
[17] Ma L F, Pang Z N, Huang Q X, et al. Rare Metal Materials and Engineering, 2014, 43(S1), 387(in Chinese).
马立峰, 庞志宁, 黄庆学, 等. 稀有金属材料与工程, 2014, 43(S1), 387.
[18] Sanjari M, Kabir A S H, Farzadfar A, et al. Journal of Materials Science, 2014, 49(3), 1426.
[19] Manabe S, Utsunomiya H, Sakai T, et al. Advanced Materials Research, 2014, 922, 469.
[20] Young J P, Ayoub G, Mansoor B, et al. Journal of Materials Processing Technology, 2015, 216, 315.
[21] Guo F, Zhang D F, Yang X S, et al. Materials Science & Engineering A, 2014, 607, 383.
[22] Su J, Sanjari M, Kabir A S H, et al. Materials Science & Engineering A, 2015, 636, 582.
[23] Pan F S, Zeng B, Jiang B, et al. Journal of Alloys and Compounds, 2017, 693, 414.
[24] Liu Q, Song J F, Pan F S, et al. Metals, 2018, 8(10), 860.
[25] Ding Y P, Le Q C, Zhang Z Q, et al. Journal of Materials Processing Technology, 2013, 213(12), 2101.
[26] Huang Z Q, Huang Q X, Wei J C, et al. Journal of Materials Processing Technology, 2017, 246, 85.
[27] Wei J C, Huang Q X, Huang Z Q, et al. Rare Metal Materials and Engineering, 2018, 47(2), 652(in Chinese).
韦建春, 黄庆学, 黄志权, 等. 稀有金属材料与工程, 2018, 47(2), 652.
[28] Jia W T, Le Q C, Tang Y, et al. Journal of Materials Science & Technology, 2018, 34(11), 2069.
[29] Zhi C C, Ma L F, Huang Q X, et al. Journal of Materials Processing Technology, 2018, 255, 333.
[30] Shim M S, Suh B C, Kim J H, et al. Metals and Materials International, 2015, 21(3), 490.
[31] Chino Y, Sassa K, Kamiya A, et al. Materials Letters, 2007, 61(7), 1504.
[32] Cheng Y Q, Chen Z H, Xia W J. Materials Characterization, 2007, 58(7), 617.
[33] Cho J H, Kim H W, Kang S B, et al. Acta Materialia, 2011, 59(14), 5638.
[34] Luo D, Wang H Y, Zhao L G, et al. Materials Characterization, 2017, 124, 223.
[35] Kim W Y, Kim W J. Materials Science & Engineering A, 2014, 594, 189.
[36] Kwak T Y, Kim W J. Journal of Materials Science & Technology, 2017, 33(9), 919.
[37] Ko Y G, Hamad K. Journal of Alloys and Compounds, 2018, 744, 96.
[38] Hamad K, Ko Y G. Scientific Reports, 2016, 6, 29954.
[39] Yang H W, Widiantara I P, Ko Y G. Materials Letters, 2018, 213, 54.
[40] Kim D G, Lee K M, Lee J S, et al. Materials Letters, 2012, 75, 122.
[41] Lim H K, Lee J Y, Kim D H, et al. Materials Science and Engineering A, 2009, 506(1-2), 63.
[42] Chino Y, Sassa K, Kamiya A, et al. Materials Science & Engineering A, 2008, 473(1-2), 195.
[43] Cheng Y Q, Chen Z H, Xia W J, et al. Journal of Plasticity Engineering, 2007, 14(4), 127(in Chinese).
程永奇, 陈振华, 夏伟军, 等. 塑性工程学报, 2007, 14(4), 127.
[44] Cheng Y Q, Chen Z H, Xia W J. Materials Characterization, 2007, 58(7), 617.
[45] Hassani F Z, Ketabchi M, Hassani M T. Journal of Materials Science, 2011, 46(24), 7689.
[46] Tu J, Zhou T, Liu L, et al. Journal of Alloys and Compounds, 2018, 768, 598.
[47] Song D H, Zhou T, Tu J, et al. Journal of Materials Processing Technology, 2018, 259, 380.
[48] Yuan Y C, Ma A B, Gou X F, et al. Materials Science & Engineering A, 2015, 630, 45.
[49] Zhang L, Wang Q D, Liao W J, et al. Materials Characterization, 2017, 126, 17.
[50] Schwarz F, Eilers C, Kruger L. Materials Characterization, 2015, 105, 144.
[51] Zha M, Meng X T, Zhang H M, et al. Journal of Alloys and Compounds, 2017, 728, 872.
[52] Saito Y, Utsunomiya H, Tsuji N, et al. Acta Materialia, 1999, 47(2), 579.
[53] Wang T Z, Zheng H P, Wu R Z, et al. Advanced Engineering Materials, 2016, 18(2), 304.
[54] Trojanova Z, Dzugan J, Halmesova K, et al. Acta Physica Polonica A, 2018, 134(3), 863.
[55] Hou L G, Wang T Z, Wu R Z, et al. Journal of Materials Science & Technology, 2018, 34(2), 317.
[56] Trojanova Z, Dzugan J, Halmesova K, et al. Materials, 2018, 11(1), 73.
[57] Drozd Z, Trojanová Z, Halmeová K, et al. Acta Physica Polonica A,2018, 134(3), 820.
[58] Luo X, Huang T L, Wang Y H, et al. Scientific Reports, 2019, 9(1), 5428.
[59] Wang H Y, Yu Z P, Zhang L, et al. Scientific Reports, 2015, 5, 17100.
[60] Rong J, Wang P Y, Zha M, et al. Journal of Alloys and Compounds, 2018, 738, 246.
[61] Zha M, Zhang X H, Zhang H, et al. Journal of Alloys and Compounds, 2018, 765, 1228.
[1] 刘江林, 齐艳阳, 王涛, 王跃林, 任忠凯, 韩建超. 镁合金板材轧制成形边裂的研究进展[J]. 材料导报, 2020, 34(7): 7138-7145.
[2] 余东海, 熊开琴, 黄楠. 等离子体聚合聚环氧乙烷类涂层用于提高镁合金心血管支架抗腐蚀性能[J]. 材料导报, 2020, 34(6): 6166-6171.
[3] 王向杰, 冯蕾, 武靖亭, 肖新华, 苏蓓蓓. 搅拌摩擦焊接ZK60镁合金弯曲性能与断裂行为研究[J]. 材料导报, 2020, 34(4): 4083-4086.
[4] 刘亮, 汪志太, 杨伟, 王振军, 蔡长春, 余欢. 铜模喷铸Mg-6Al-1Y合金快冷组织形成及其固溶行为[J]. 材料导报, 2020, 34(20): 20066-20069.
[5] 王柏宁, 王峰, 王志, 周乐, 毛萍丽, 刘正. 铸态与挤压态AM50-4%(Zn,Y)合金组织及力学性能[J]. 材料导报, 2020, 34(20): 20076-20080.
[6] 王小鹏, 李晓延, 吴奇, 徐洲. 织构对6061-T6铝合金X射线应力测试精度的影响机理[J]. 材料导报, 2020, 34(20): 20081-20085.
[7] 雷意, 严红革, 陈吉华, 夏伟军, 苏斌, 丁天, 黄文森. 温度对ZK60镁合金细晶板材成形性能的影响[J]. 材料导报, 2020, 34(2): 2067-2071.
[8] 郭丽丽, 苑菁茹, 汪建强, 李永兵. ZK60镁合金中空型材挤压成形的有限元模拟及组织和性能[J]. 材料导报, 2020, 34(2): 2072-2076.
[9] 刘晓燕, 张琪, 高飞龙, 杨西荣, 罗雷, 柳奎君. 复合变形制备超细晶工业纯钛的研究进展[J]. 材料导报, 2020, 34(19): 19111-19116.
[10] 秦芳诚, 齐会萍, 李永堂, 武永红, 亓海全, 刘崇宇. 环形零件短流程铸辗复合成形技术研究进展[J]. 材料导报, 2020, 34(19): 19152-19165.
[11] 杨西荣, 郝凤凤, 罗雷, 刘晓燕, 马炜杰, 王立元. 大角度ECAP变形模具制备纯钛的变形织构演化模拟[J]. 材料导报, 2020, 34(16): 16077-16082.
[12] 陈怡, 邹文兵, 郭龙涛, 杨春利. 铸造镁合金的焊接修复技术研究现状及发展方向[J]. 材料导报, 2020, 34(15): 15126-15131.
[13] 黄晓锋, 魏浪浪, 杨剑桥, 张乔乔, 尚文涛, 李旭娇. 半固态等温热处理对Mg-7Zn-1Cu-0.3V镁合金非枝晶组织的影响[J]. 材料导报, 2020, 34(14): 14116-14121.
[14] 谢誉璐, 黄光胜, 刘帅帅, 张军磊, 潘复生. 微量Ca元素对AZ31镁合金热变形行为的影响[J]. 材料导报, 2020, 34(12): 12070-12075.
[15] 热焱, 邱克强, 李东和, 丁韧, 王梅, 徐慧, 徐颖. 高硬度Mg-5Al-2Sn-5Ca镁合金在铸态与热处理后的蠕变行为[J]. 材料导报, 2020, 34(12): 12076-12082.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed