Please wait a minute...
材料导报  2020, Vol. 34 Issue (23): 23171-23178    https://doi.org/10.11896/cldb.19100049
  金属与金属基复合材料 |
织构化表面摩擦学性能的研究进展
钟兵1,2, 邢志国2, 王海斗2, 吕晓仁1, 黄艳斐2, 郭伟玲2, 张仲1,2
1 沈阳工业大学机械工程学院,沈阳 110870
2 陆军装甲兵学院装备再制造技术国防科技重点实验室,北京 100072
Research Progress on the Tribological Properties of Textured Surfaces
ZHONG Bing1,2, XING Zhiguo2, WANG Haidou2, LYU Xiaoren1, HUANG Yanfei2, GUO Weiling2, ZHANG Zhong1,2
1 School of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870, China
2 National Key Laboratory for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China
下载:  全 文 ( PDF ) ( 8966KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 表面织构作为一种提高表面性能的方法,已经成为国内外表面工程领域研究的热点。随着精细加工技术的快速发展,人们可以通过控制表面织构的尺寸和形状来改善样品的表面性能。仿生技术为表面织构设计提供了源泉,将生物体表面微观形状特征加工到材料表面,使仿生结构表面展现出优异的性能。目前,对表面织构的精确制造以及加工影响因素的模型化研究已取得了较大进展,但对某些特定接触条件下表面织构化的有效性研究仍处于初级阶段。现有研究中没有能够适用于任何方案的织构设计,因为大多数表面织构技术只有在特定的尺寸和几何条件下才能使用,对不同问题需要用不同的技术来处理。
织构化表面比未织构化表面具有更好的摩擦学性能。本文对织构化表面的摩擦学性能进行了讨论,首先介绍了使用激光刻蚀技术、化学刻蚀技术、光刻蚀技术、电化学加工技术、激光喷丸技术和超声波振动辅助加工技术在材料表面制备微观结构的方法,通过改变被加工表面织构的几何尺寸、加工精度,面积密度等条件,可以得到不同的减摩抗磨织构;然后分析了在不同摩擦状态下的减摩机制;最后总结了当前各种表面织构制备技术的优缺点。
目前,对最佳织构参数的研究仍在进行,减摩抗磨表面织构的有效性主要取决于实际接触情况和应用。表面织构设计参数较多,主要有织构形状、面积密度、特征尺寸等。必须优化织构化技术,才能使表面织构具有规则的几何形状和特征尺寸。因此,最佳织构参数的预测很有必要。模拟不同摩擦状态下表面织构的摩擦磨损,可以代替耗时长、价格昂贵的“反复试验”,为机械和医学领域的快速发展提供了便利。最后,对织构化表面进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
钟兵
邢志国
王海斗
吕晓仁
黄艳斐
郭伟玲
张仲
关键词:  织构方法  织构化表面  摩擦性    
Abstract: As a method to improve the surface properties, surface texture has become a hot topic in the field of surface engineering at home and abroad. With the rapid development of fine processing technology, one can control the size and shape of the surface texture to improve the surface properties of the sample. Biomimetic technology provides a source of surface texture design, and the surface properties of the surface of the organism can be processed to the surface of the material to enhance its surface properties. The research on precise fabrication of surface texture and the modeling of factors affecting processing has made great progress, but the research on effectiveness of surface texturing under certain contact conditions is still in research stage. Current research indicates that no texture design can be applied to any solution, as most surface texture techniques can only be applied to specific dimensions and geometries, and different techniques are required for different problems.
The textured surface has better tribological properties than the untextured surface. In this paper, the tribological properties of textured surfaces are discussed. Firstly, the method of preparing microstructures on the surface of materials by laser etching, chemical etching, photoetching technology, electrochemical processing technology, laser shot peening technology and ultrasonic vibration assisted processing technology are introduced. By changing the geometry of the surface texture of the processed surface. Different friction and anti-wear textures can be obtained under the conditions of size, processing precision and area density. Then the friction reduction mechanism under different friction states is analyzed. Finally, the advantages and disadvantages of various surface texture preparation techniques are summarized.
At present, the research on the optimal texture parameters is still in progress, and the effectiveness of anti-friction anti-wear surface texture depends mainly on the actual contact situation and application. The number of parameters of surface texture design is large, mainly including texture shape, area density, feature size and so on. The texturing technique must be optimized to allow the surface texture to have regular geometric shapes and feature sizes. Therefore, the prediction of the optimal texture parameters will be necessary. Simulating the friction and wear of the surface texture under different friction conditions can replace the “repetitive test” which is time-consuming and expensive, and provides convenience for the rapid development of the mechanical field and the medical field. Finally, outlook the textured surface.
Key words:  texture method    textured surface    friction
               出版日期:  2020-12-10      发布日期:  2020-12-24
ZTFLH:  TB321  
基金资助: 国家自然科学基金(51775554;51535011)
通讯作者:  xingzg2011@163.com   
作者简介:  钟兵, 2018年7月毕业于齐齐哈尔大学,获得工学学士学位。现为沈阳工业大学机械工程学院硕士研究生。在吕晓仁教授、邢志国助理研究员、王海斗研究员的指导下进行研究。目前主要研究方向为材料表面织构。
邢志国,装备再制造技术国防科技重点实验室助理研究员,主要从事摩擦学与再制造寿命评估方向的教学与科研工作,现任中国机械工程学会摩擦学分会青年摩擦工作委员会副主任;中国大百科全书第三版机械工程卷绿色制造章节词条撰写人;教育部一万个科学难题制造卷编写组成员;兼任三部国际国内SCI和EI检索期刊的审稿人。获北京市自然科学二等奖1项,排名第5。授权各类专利30项,其中美国发明专利2项,国家发明专利11项,国家实用新型专利及软件著作权17项。共发表学术论文49篇,其中第一作者和通讯作者22篇,被SCI检索8篇,EI检索13篇。
引用本文:    
钟兵, 邢志国, 王海斗, 吕晓仁, 黄艳斐, 郭伟玲, 张仲. 织构化表面摩擦学性能的研究进展[J]. 材料导报, 2020, 34(23): 23171-23178.
ZHONG Bing, XING Zhiguo, WANG Haidou, LYU Xiaoren, HUANG Yanfei, GUO Weiling, ZHANG Zhong. Research Progress on the Tribological Properties of Textured Surfaces. Materials Reports, 2020, 34(23): 23171-23178.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19100049  或          http://www.mater-rep.com/CN/Y2020/V34/I23/23171
1 Autumn K. MRS Bulletin,2007,32(6),473.
2 Wang J Q, Wang X L. Journal of Mechanical Engineering,2015,51(23),84(in Chinese).
王静秋,王晓雷.机械工程学报,2015,51(23),84.
3 Wu M K. Progress in Textile Technology,2009(2),90(in Chinese).
吴明康.纺织科技进展,2009(2),90.
4 Usman Ali, Cheol Woo Park. Tribology International,2016,99,224.
5 Vlădescu S C, Medina S, Olver A V, et al. Tribology International,2016,98,317.
6 Biboulet N, Lubrecht A A. Tribology International,2016,96,269.
7 Mezghani S, Demirci I, Zahouani H, et al. Precision Engineering,2012,36(2),210.
8 Feldman Y, Kligerman Y, Etsion I. Tribology Letters,2006,22(1),21.
9 Fowell M T, Medina S, Olver A V, et al. Tribology International,2012,52,7.
10 Wang X, Kato K, Adachi K, et al. Tribology International,2003,36(3),189.
11 Etsion I, Halperin G, Brizmer V, et al. Tribology Letters,2004,17(2),295.
12 Qiu Y, Khonsari M M. Tribology International,2011,44(5),635.
13 Shen X H, Tao G C. The International Journal of Advanced Manufacturing Technology,2015,79(9-12),1995.
14 Gu C, Meng X, Xie Y, et al. Tribology International,2016,94,591.
15 Abdollahi A, Alizadeh A, Baharvandi H R. Materials & Design,2014,55,471.
16 Sudeep U, Tandon N, Pandey R K. Journal of Tribology,2015,137(3),031501.
17 Xing D, Zhang J, Shen X, et al. Procedia CIRP,2013,6,539.
18 Daniel C, Manderla J, Hallmann S, et al. Physics Procedia,2016,83,135.
19 Hu J, Xu H. Tribology International,2016,102,371.
20 Hua X, Sun J, Zhang P, et al. Tribology International,2016,98,190.
21 Ta D V, Dunn A, Wasley T J, et al. Applied Surface Science,2015,357,248.
22 He D, Zheng S, Pu J, et al. Tribology International,2015,82,20.
23 Shamsul B A F, Ghazali M J, Wahab A J. Industrial Lubrication and Tribology,2016,68(1),57.
24 Mohmad M, Abdollah M F B, Tamaldin N, et al. Industrial Lubrication and Tribology,2017,69(5),768.
25 Chen W, Liu X, Zheng L. Industrial Lubrication and Tribology,2017,69(2),248.
26 Gualtieri E, Borghi A, Calabri L, et al. Tribology International,2009,42(5),699.
27 Shum P W, Zhou Z F, Li K Y. Surface and Coatings Technology,2014,259,136.
28 Etsion I. Tribology Letters,2004,17(4),733.
29 Vlădescu S C, Olver A V, Pegg I G, et al. Wear,2016,358,51.
30 Oksanen J, Hakala T J, Tervakangas S, et al. Tribology International,2014,70,94.
31 Yin B, Xu B, Jia H, et al. Journal of Engineering Tribology,2018,232(7),871.
32 Andersson P, Koskinen J, Varjus S, et al. Wear,2007,262(3-4),369.
33 Vladescu S C, Olver A V, Pegg I G, et al. Tribology International,2015,82,28.
34 Etsion I. Journal of Tribology,2005,127(1),248.
35 Huang Z, Geyer N, Werner P, et al. Advanced Materials,2011,23(2),285.
36 Shimizu M, Yamada T, Sasaki K, et al. Science and Technology of Advanced Materials, DOI:10.1088/1468-6996/16/2/025001.
37 Wan Y, Wang Y, Zhang Q, et al. Applied Surface Science,2012,259,147.
38 Cao L, Wan Y, Gao J G. Surface Technology,2016,45(10),83(in Chinese).
曹磊,万勇,高建国.表面技术,2016,45(10),83.
39 Li P, Chen X, Yang G, et al. Applied Surface Science,2014,300,184.
40 Saito Y, Yabu H. Langmuir,2015,31(3),959.
41 Li C D, Li B, Shen Y, et al. Journal of Engineering Tribology,2018,232(6),722.
42 Riahi A R, Perry T, Alpas A T. Materials Science and Engineering: A,2003,343(1-2),76.
43 Das S, Perry T, Biswas S K. Tribology Letters,2006,21(3),193.
44 Du F, Li C, Mi Z, et al. Materials,2019,12(8),1273.
45 Wan Y, Wang Y, Zhang Q, et al. Applied Surface Science,2012,259,147.
46 Li C D,Li B, Shen Y, et al. Journal of Tribology,2018,140(4),041302.
47 Xu Y F,Mason T G. Tribology Letters,2018,66(2),55.
48 Tsipenyuk A, Varenberg M. Journal of the Royal Society Interface,2014,11(94),20140113.
49 Byun J W, Shin H S, Kwon M H, et al. International Journal of Precision Engineering & Manufacturing,2010,11(5),747.
50 Shen C, Huang W, Ma G, et al. Surface and Coatings Technology,2009,204(4),433.
51 Li K, Yao Z, Hu Y, et al. Tribology Internationa,2014,77,97.
52 Mu D, et al. Lasers in Engineering (Old City Publishing),2017,36(1-3),51.
53 Xing D, Zhang J, Shen X, et al. Procedia CIRP,2013,6,539.
54 Amini S, Nouri Hosseinabadi H, Sajjady S A. Applied Surface Science,2016,390,633.
55 Zheng K, Li Z, Liao W, et al. Journal of the Brazilian Society of Mecha-nical Ences and Engineering,2017,39(3),833.
56 Martz L S. Proceedings of the Institution of Mechanical Engineers,1949,161(1),1.
57 Spencer A. Optimizing surface texture for combustion engine cylinder liners. Ph. D. Thesis, Luleå University of Technology, Sweden,2010.
[1] 何延如, 田小让, 赵冠超, 代玲玲, 聂革, 刘敏胜. 石墨烯薄膜的制备方法及应用研究进展[J]. 材料导报, 2020, 34(5): 5048-5060.
[2] 朱广彬, 边志成, 何雨林, 李前进, 郭路路, 罗志虹, 罗鲲. 铁/氮共掺杂石墨烯的制备及氧还原催化活性[J]. 材料导报, 2020, 34(2): 2010-2016.
[3] 李大玉, 张文韬, 张超. 不同种类金属掺杂改性TiO2材料光催化性能的研究进展[J]. 材料导报, 2019, 33(23): 3900-3907.
[4] 王会权, 陈惠, 王后, 巫静, 刘洪波. 还原温度对石墨烯负载Pd颗粒的结构与电催化性能的影响[J]. 材料导报, 2019, 33(22): 3695-3700.
[5] 刘贺, 傅仁利, 何钦江, 李国郡, 王贺. SiO2-BPO4/LMZBS低温烧结玻璃陶瓷及其微波介电性能[J]. 材料导报, 2019, 33(18): 3152-3155.
[6] 胡厅, 万红, 华叶, 龚瑾瑜, 陈兴宇. 石墨表面TiC梯度涂层的制备及结构调制[J]. 材料导报, 2019, 33(z1): 74-77.
[7] 杨飞跃, 赵爽, 陈国兵, 陈俊, 杨自春. Si3N4泡沫陶瓷的制备过程影响因素及复合化研究进展[J]. 材料导报, 2019, 33(z1): 178-183.
[8] 叶凯, 梁风, 姚耀春, 马文会, 杨斌, 戴永年. 直流电弧等离子体法制备纳米材料的研究进展[J]. 材料导报, 2019, 33(7): 1089-1098.
[9] 王译文, 王海斗, 马国政, 陈书赢, 何鹏飞, 丁述宇. Ti4O7功能陶瓷材料研究与应用现状[J]. 材料导报, 2019, 33(1): 143-151.
[10] 王俊杰, 房晶瑞, 汪澜. 水泥生产全过程硫循环机制的研究进展[J]. 材料导报, 2018, 32(23): 4160-4169.
[11] 王顺风, 马雪, 张祖华, 王爱国, 李亚林. 粉煤灰-偏高岭土基地质聚合物的孔结构及抗压强度[J]. 材料导报, 2018, 32(16): 2757-2762.
[12] 李延军, 刘冬华, 张电, 马昱昭. 含h-BN复相陶瓷制备及性能研究进展[J]. 材料导报, 2018, 32(15): 2609-2617.
[13] 李之锋, 罗垂意, 王春香, 钟盛文, 张骞. 无钴镍基正极材料LiNi0.7Mn0.3O2 氟掺杂改性研究[J]. 《材料导报》期刊社, 2018, 32(14): 2329-2334.
[14] 吴健, 关庆丰, 蔡杰, 吕鹏, 张从林, 李晨. 脉冲电子束作用下热障涂层微观结构及热循环性能[J]. 《材料导报》期刊社, 2018, 32(13): 2202-2207.
[15] 秦晓素,黄洁,雷云,杨泽斌,陈庆华,颜廷亭. 明胶/掺锶β-磷酸三钙/硫酸钙复合多孔支架的制备与性能[J]. 《材料导报》期刊社, 2018, 32(12): 1967-1972.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed