Please wait a minute...
材料导报  2022, Vol. 36 Issue (10): 20090073-12    https://doi.org/10.11896/cldb.20090073
  金属与金属基复合材料 |
挤压镁合金的研究进展
鲍键1, 李全安1,2, 陈晓亚1,2, 张迁1,*, 陈籽佚1
1 河南科技大学材料科学与工程学院,河南 洛阳 471023
2 有色金属新材料与先进加工技术省部共建协同创新中心,河南 洛阳 471023
Research Progress on Extruded Magnesium Alloys
BAO Jian1, LI Quan'an1,2, CHEN Xiaoya1,2, ZHANG Qian1,*, CHEN Ziyi1
1 School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, Henan, China
2 Provincial and Ministerial Co-construction of Collaborative Innovation Center for Non-ferrous Metal New Materials and Advanced Processing Technology, Luoyang 471023, Henan, China
下载:  全 文 ( PDF ) ( 14432KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 镁合金因其优异的轻质性、较高的比强度和优良的可回收性等优点在汽车工业、3C产品、航天航空等领域有着广阔的应用前景。近年来,虽然挤压镁合金在市场的应用率稳步增长,但挤压镁合金的商业应用率与挤压铝合金的相比仍然有不小的差距,这主要是因为挤压镁合金的可挤压性差、拉伸-压缩屈服不对称、绝对强度低等问题限制了其商业发展。提高镁合金的强度和挤压效率能有效地扩大镁合金的商业化应用范围,而合金成分和热挤压工艺参数是影响挤压合金组织和性能的决定性因素。近年来,研究人员从合金化设计和挤压工艺方面着手,对挤压镁合金的微观组织和力学性能强化进行了深入研究,并取得了重要进展。
   本文简述了镁合金在挤压过程中出现热裂现象的原因、机理以及影响因素,概述了热挤压过程中合金微观组织的演变规律,总结了动态再结晶的形核机理和织构弱化的机制,讨论了挤压参数(挤压温度、挤压速率、挤压比)对挤压态合金性能的影响规律。从合金成分设计、合金体系方面详细地综述了近年来Mg-Al、Mg-Zn、Mg-Sn、Mg-RE系高强度挤压镁合金的研究进展,并且分析了高强度挤压镁合金的强化机理。根据目前挤压镁合金与挤压铝合金在性能上存在的差距,对挤压镁合金提出了新的合金设计思路和工艺路线,并展望了未来高性能镁挤压合金进一步的研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
鲍键
李全安
陈晓亚
张迁
陈籽佚
关键词:  可挤压性  挤压参数  织构  高强度镁合金    
Abstract: Magnesium (Mg) alloys have broad application prospect in the automotive industry, 3C products, aerospace and other fields due to their lightweight, high specific strength, fine retrievability and other excellent characteristics. In recent years, although the application rate of extruded Mg alloy in the market has grown steadily, there is still a gap between extruded Mg alloy and extruded Al alloy on industrial application because of limits of commercial development resulting from poor extrudability, tension-compression yield asymmetry, low absolute strength, etc. Increasing the absolute strength and extrusion efficiency of Mg alloy can effectively expand the industrial application of magnesium alloy. The alloy composition and thermal processing parameters are the decisive factors affecting the microstructure and properties of the extruded alloy. In recent years, researchers have deeply studied the microstructure and mechanical properties of extruded Mg alloys from alloying design and hot extrusion process, and made important progress.
The causes, mechanism and influencing factors of hot cracking of Mg alloy during extrusion are described in this paper. The evolution of microstructure of alloy during hot extrusion was introduced, and the nucleation mechanisms of dynamic recrystallization and mechanism of texture weakening were summarized. The effects rules of extrusion parameters (extrusion temperature, extrusion rate and extrusion ratio) on the properties of extruded alloys were discussed. The research progress of Mg-Al, Mg-Zn, Mg-Sn and Mg-RE high-strength extruded Mg alloys in recent years was reviewed in detail from the aspects of alloy composition design and alloy system, and the strengthening mechanism of high-strength Mg alloys was analyzed. The new alloy design and process route were proposed for extruded Mg alloy considering the gap between extruded Mg alloy and extruded Al alloy, and prospects regarding the development of Mg extrusion alloys with high performance were discussed.
Key words:  extrudability    extrusion parameters    texture    high strength Mg alloys
发布日期:  2022-05-24
ZTFLH:  TG379  
基金资助: 国家自然科学基金(51571084);中原英才计划-中原青年拔尖人才(〔2021〕44);河南省自然科学基金(222300420435)
通讯作者:  qali@haust.edu.cn   
作者简介:  鲍键,2019年毕业于洛阳理工学院,获得学士学位,现为河南科技大学硕士研究生,在李全安教授的指导下进行研究,主要从事高性能镁合金的设计与开发。
李全安,1988年于西安交通大学获得硕士学位,2000年于四川大学获得博士学位。 现任河南科技大学教授、博士研究生导师。主要从事稀土功能材料、高性能镁合金和稀土铝合金等方面的研究。主持国家自然科学基金、河南省杰出人才基金、河南杰出青年基金等项目10余项。发表学术论文300余篇,授权国家发明专利20余项。
引用本文:    
鲍键, 李全安, 陈晓亚, 张迁, 陈籽佚. 挤压镁合金的研究进展[J]. 材料导报, 2022, 36(10): 20090073-12.
BAO Jian, LI Quan'an, CHEN Xiaoya, ZHANG Qian, CHEN Ziyi. Research Progress on Extruded Magnesium Alloys. Materials Reports, 2022, 36(10): 20090073-12.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090073  或          http://www.mater-rep.com/CN/Y2022/V36/I10/20090073
1 He S M, Zeng X Q, Peng L M, et al. Journal of Alloys and Compounds, 2007, 427(1-2), 316.
2 Kulekci M K. The International Journal of Advanced Manufacturing Technology, 2008, 39(9-10), 851.
3 Yang M B, Liu Q, Zhong L X, et al. Journal of Chongqing University of Technology (Natural Science), 2019, 33(2), 99 (in Chinese).
杨明波, 刘婧, 钟罗喜, 等. 重庆理工大学学报(自然科学), 2019, 33(2), 99.
4 Kainer K U, Buch F. Magnesium alloys and technology, WILEY-VCH Verlag GmbH & Co. KG A, Weinheim, 2003.
5 Hoseini-Athar M M, Mahmudi R, Babu R P, et al. Materials Science and Engineering: A, 2020, 772, 138833.
6 Meng S, Yu H, Fan S, et al. Acta Metallurgica Sinica (English Letters), 2019, 32(2), 145.
7 Polmear I, StJohn D, Nie J F, et al. Light alloys: metallurgy of the light metals (fifth edition), Butterworth-Heinemann, Boston, 2017.
8 Kim S, Lee J U, Kim Y J, et al. Materials Science and Engineering: A, 2017, 703, 1.
9 Bettles C, Barnett M. Advances in wrought magnesium alloys: fundamentals of processing, properties and applications, Woodhead Publishing, Cambridge, 2012.
10 Song B,Xin R L, Sun L Y, et al. The Chinese Journal of Nonferrous Metals, 2014, 24(8), 1941(in Chinese).
宋波,辛仁龙,孙立云,等. 中国有色金属学报. 2014, 24(8), 1941.
11 Jahedi M, Mcwilliams B A, Moy P, et al. Acta Materialia, 2017, 131, 221.
12 Sun C, Xiang Y, Liu G, et al. The International Journal of Advanced Manufacturing Technology, 2017, 89(9-12), 3419.
13 Zeng Z, Stanford N, Davies C H J, et al. International Materials Reviews, 2019, 64(1), 27.
14 Liu X, Zhang Z Q, Hu W Y, et al. Journal of Materials Science & Technology, 2015, 32(4), 313.
15 Davies C, Barnett M. JOM, 2004, 56(5), 22.
16 Bai S W, Fang G, Zhou J. Metallurgical and Materials Transactions A, 2019, 50(7), 3246.
17 Nakata T, Mezaki T, Xu C, et al. Journal of Alloys and Compounds, 2015, 648, 428.
18 Nakata T, Xu C, Ajima R, et al. Acta Materialia, 2017, 130, 261.
19 Nakata T, Xu C, Matsumoto Y, et al. Materials Science and Engineering: A, 2016, 673, 443.
20 Jiang M G, Xu C, Nakata T, et al. Materials Science and Engineering: A, 2016, 678, 329.
21 Go J, Jin S, Kim H, et al. Journal of Alloys and Compounds, 2020, 843, 156026.
22 Park S H, Kim S, Kim H S, et al. Journal of Alloys and Compounds, 2015, 648, 615.
23 Cram D G, Zurob H S, Brechet Y J M, et al. Acta Materialia, 2009, 57(17), 5218.
24 Sakai T, Belyakov A, Kaibyshev R, et al. Progress in Materials Science, 2014, 60, 130.
25 Tian Y X, Liu C, Cao H L, et al. Rare Metal Materials and Engineering, 2019, 48(11), 3764 (in Chinese).
田宇兴,刘成,曹海龙,等. 稀有金属材料与工程, 2019, 48(11), 3764.
26 Huang K, Logé R E. Materials & Design, 2016, 111, 548.
27 Ion S E, Humphreys F J, White S H. Acta Metallurgica, 1982, 30(10), 1909.
28 Gourdet S, Montheillet F. Acta Materialia, 2003, 51(9), 2685.
29 Molodov K D, Al-Samman T, Molodov D A, et al. Acta Materialia, 2014, 76, 314.
30 Basu I, Al-Samman T, Gottstein G. Materials Science and Engineering: A, 2013, 579, 50.
31 Robson J D, Henry D T, Davis B. Acta Materialia, 2009, 57(9), 2739.
20090073-1132 Yoo M H. Metallurgical and Materials Transactions A, 1981, 12(3), 409.
33 Zhang B P, Geng L, Huang L J, et al. Scripta Materialia, 2010, 63(10), 1024.
34 Cheng W L, Kim H S, You B S, et al. Materials Letters, 2011, 65(11), 1525.
35 Tong L B, Zheng M Y, Cheng L R, et al. Materials Science and Engineering: A, 2013, 569, 48.
36 Tang W Q, Zhou G W, Shao Y C, et al. Materials Characterization, 2020, 162, 110189.
37 Sandläbes S, Friák M, Zaefferer S, et al. Acta Materialia, 2012, 60(6-7), 3011.
38 Sandläbes S, Pei Z, Friák M, et al. Acta Materialia, 2014, 70, 92.
39 Robson J D, Haigh S J, Davis B, et al. Metallurgical and Materials Transactions A, 2016, 47(1), 522.
40 Yu H, Park S H, You B S, et al. Materials Science and Enginee-ring: A, 2013, 583, 25.
41 Stanford N, Barnett M. Scripta Materialia, 2008, 58, 179.
42 Guan D, Rainforth W M, Gao J, et al. Acta Materialia, 2018, 145, 399.
43 Stanford N, Sha G, Xia J H, et al. Scripta Materialia, 2011, 65(10), 919.
44 Jung I H, Sanjari M, Kim J, et al. Scripta Materialia, 2015, 102, 1.
45 Wang T, Jiang L, Mishra R K, et al. Metallurgical and Materials Tran-sactions A, 2014, 45(10), 4698.
46 Zhang B P, Wang Y, Geng L, et al. Materials Science and Engineering: A, 2012, 539, 56.
47 Jiang M G, Xu C, Nakata T, et al. Journal of Alloys and Compounds, 2016, 668, 13.
48 Nakata T, Mezaki T, Xu C, et al. Journal of Alloys and Compounds, 2015, 648, 428.
49 Park S H, Kim H S, You B S. Metals and Materials International, 2014, 20(2), 291.
50 She J, Pan F, Zhang J, et al. Journal of Alloys and Compounds, 2016, 657, 893.
51 Yu Z J, Xu C, Meng J, et al. Materials Science and Engineering: A, 2019, 762, 138080.
52 Xin X S, Chino Y, Yuasa, M, et al. Materials Science and Engineering A, 2017, 679, 162.
53 Xu C, Nakata T, Qiao X G, et al. Materials Science and Engineering: A, 2017, 685, 159.
54 Zhao D Q, Zhou J X, Liu Y T, et al. Acta Metallurgica Sinica, 2014, 50(1), 41(in Chinese).
赵东清,周吉学,刘运腾,等. 金属学报, 2014, 50(1), 41.
55 Li X, Jiao F, Al-Samman T, et al. Scripta Materialia, 2012, 66(3-4), 159.
56 Derby B. Acta Metallurgica et Materialia, 1991, 39(5), 955.
57 Yu H H, Xin Y C, Wang M Y, et al. Journal of Materials Science & Technology, 2018, 34(2), 248.
58 Cheng W L, Kim H S, You B S, et al. Materials Letters, 2011, 65(11), 1525.
59 Li W J, Deng K K, Zhang X, et al. Materials Science and Engineering: A, 2016, 677, 367.
60 Lu X, Zhao G Q, Zhou J X, et al. Vacuum, 2018, 157, 180.
61 Park S H, Kim H S, You B S. Metals and Materials International, 2014, 20(2), 291.
62 Park S H, You B S, Mishra R K, et al. Materials Science and Enginee-ring: A, 2014, 598, 396.
63 Yu H, Park S H, You B S, et al. Materials Science and Engineering: A, 2013, 583, 25.
64 Kang X K, Nie K B, Deng K K, et al. Materials Characterization, 2019, 151, 137.
65 Chen Y J, Wang Q D, Peng J G, et al. Journal of Materials Processing Technology, 2007, 182(1-3), 281.
66 Zhang J F, Deng L. Materials Research Express, 2019, 6(7), 76506.
67 Sheikhani A, Palizdar Y, Nezhad M, et al. Materials Research Express, 2019, 6(8), 86594.
68 Zhang X B, Yuan G Y, Wang Z Z. Materials Science and Technology, 2013, 29(1), 111.
69 Zhang X B, Yuan G Y, Niu J L, et al. Journal of the Mechanical Beha-vior of Biomedical Materials, 2012, 9, 153.
70 Mwembela A, Konopleva E B, Mcqueen H J. Scripta Materialia, 1997, 37(11), 1789.
71 Yu Z, Huang Y, Gan W, et al. Journal of Materials Science, 2017, 52(11), 6670.
72 Yu Z, Huang Y, Qiu X, et al. Materials Science and Engineering: A, 2015, 622, 121.
73 ClarkJ B, Zabdyr L, Moser Z. Phase diagrams of binary magnesium alloys, ASM International, America, 1988.
74 Han L H, Hu H, Northwood D O. Materials Letters, 2008, 62(3), 381.
75 Jiang Z T, Jiang B, Yang H, et al. Journal of Alloys and Compounds, 2015, 647, 357.
76 Huang Q, Liu Y, Tong M, et al. Vacuum, 2020, 177, 109356.
77 Stanford N, Atwell D. Metallurgical and Materials Transactions A, 2013, 44(10), 4830.
78 Xu S W, Oh-Ishi K, Kamado S, et al. Scripta Materialia, 2011, 65(3), 269.
79 Nakata T, Xu C, Ajima R, et al. Materials Science and Engineering: A, 2018, 712, 12.
81 Wang X Y, Wang Y F, Wang C, et al. Journal of Materials Science & Technology, 2020, 49, 117.
82 Bae S W, Kim S, Lee J U, et al. Journal of Alloys and Compounds, 2018, 766, 748.
83 She J, Pan F, Zhang J, et al. Journal of Alloys and Compounds, 2016, 657, 893.
84 Park S H, Jung J, Kim Y M, et al. Materials Letters, 2015, 139, 35.
85 Mendis C, Ohishi K, Kawamura Y, et al. Acta Materialia, 2009, 57(3), 749.
86 Zeng Z R, Zhu Y M, Xu S W, et al. Acta Materialia, 2016, 105, 479.
87 Du Y Z, Zheng M Y, Jiang B L. Journal of Materials Research, 2018, 33(8), 1003.
88 Nie K B, Zhu Z H, Munroe P, et al. Acta Metallurgica Sinica (English Letters), 2020, 33(7), 922.
89 Lu X, Zhao G Q, Zhou J X, et al. Journal of Alloys and Compounds, 2018, 732, 257.
90 Lu X, Zhao G Q, Zhou J X, et al. Vacuum, 2018, 157, 180.
91 Xu D K, Tang W N, Liu L, et al. Journal of Alloys and Compounds, 2007, 432(1-2), 129.
92 Tahreen N, Zhang D F, Pan F S. Journal of Materials Science & Techno-logy, 2015, 31(12), 1161.
93 Horváth K, Drozdenko D, Daniš S, et al. Advanced Engineering Mate-rials, 2018, 20(1), 1700396.
94 Li J, Wang F, Mao P, et al. Journal of Materials Research, 2015, 30(12), 1965.
95 Xu D K, Liu L, Xu Y B, et al. Materials Science and Engineering: A, 2007, 443(1-2), 248.
96 Jiang H S, Qiao X G, Xu C, et al. Materials & Design, 2016, 108, 391.
97 Jiang H S, Qiao X G, Zheng M Y, et al. Materials Characterization, 2018, 135, 96.
98 Qiu X, Yang Q, Cao Z Y. Rare Metals, 2016, 35(11), 841.
99 Qiu X, Yang Q, Guan K, et al. Rare Metals, 2017, 36(12), 962.
100 Liu L Z, Chen X H, Pan F S, et al. Journal of Alloys and Compounds, 2016, 688, 537.
101 Kang X K, Nie K B, Deng K K, et al. Materials Characterization, 2019, 151, 137.
102 Chai Y F, Jiang B, Song J F, et al. Journal of Alloys and Compounds, 2018, 782, 1076.
103 Pan H C, Qin G W, Huang Y M, et al. Acta Materialia, 2018, 149, 350.
104 Jiang J, Li T Q, Bi G L, et al. Journal of Materials Engineering and Performance, 2019, 28(5), 2672.
105 Kim S, Lee J U, Kim Y J, et al. Journal of Alloys and Compounds, 2018, 751, 1.
106 Sasaki T T, Yamamoto K, Honma T, et al. Scripta Materialia, 2008, 59(10), 1111.
107 Park S H, Kim S, Kim H S, et al. Journal of Alloys and Compounds, 2016, 667, 170.
108 Shi Z Z, Zhang M, Huang X F, et al. Acta Metallurgica Sinica, 2019, 55(10), 1231(in Chinese).
石章智,张敏,黄雪飞,等. 金属学报. 2019, 55(10), 1231.
109 Elsayed F R, Sasaki T T, Ohkubo T, et al. Materials Science and Engineering: A, 2013, 588, 318.
110 Sasaki T T, Elsayed F R, Nakata T, et al. Acta Materialia, 2015, 99, 176.
111 Huang X F, Zhang W Z. Materials Science and Engineering: A, 2012, 552, 211.
112 Wang Y J, Peng J, Zhong L P. Journal of Alloys and Compounds, 2018, 744, 234.
113 Vostry P, Smola B, Stulíková I, et al. Physica Status Solidi, 1999, 175(2), 491.
114 Nie J F, Gao X, Zhu S M. Scripta Materialia, 2005, 53(9), 1049.
115 Smola B, Stul'ková I, von Buch F, et al. Materials Science and Engineering A, 2002, 324(1), 113.
116 Alizadeh R, Mahmudi R, Ngan A H W, et al. Journal of Materials Science, 2015, 50(14), 4940.
117 Li R G, Nie J F, Huang G J, et al. Scripta Materialia, 2011, 64(10), 950.
118 He S M, Zeng X Q, Peng L M, et al. Journal of Alloys and Compounds, 2006, 421(1-2), 309.
119 Apps P J, Karimzadeh H, King J F, et al. Scripta Materialia, 2003,48(8),1023.
120 Liu X, Hu W Y, Le Q C, et al. Materials Science and Engineering: A, 2014, 612, 380.
121 Zhang Y, Rong W, Wu Y J, et al. Materials Science and Engineering: A, 2018, 731, 609.
122 Sha X C, Xiao L R, Chen X F, et al. Philosophical Magazine, 2019, 99(16), 1957.
123 Wang Q D, Chen J, Zhao Z, et al. Materials Science and Engineering: A, 2010, 528(1), 323.
124 Movahedi-Rad A, Mahmudi R, Wu G H, et al. Journal of Alloys and Compounds, 2015, 626, 309.
125 Zhang Y, Rong W, Wu Y J, et al. Journal of Materials Science & Technology, 2020, 54, 160.
126 Anyanwu I A, Kamado S, Kojima Y. Materials Transations, 2001, 42(7), 1206.
127 Xu C, Nakata T, Fan G H, et al. Journal of Materials Science, 2019, 54(14), 10473.
128 Wang J, Song P, Huang S, et al. Materials Letters, 2013, 93, 415.
129 Homma T, Kunito N, Kamado S. Scripta Materialia, 2009, 61(6), 644.
130 Rong W, Zhang Y, Wu Y J, et al. Materials Characterization, 2017, 131, 380.
131 Rong W, Zhang Y, Wu Y J, et al. Materials Science and Engineering: A, 2019, 740, 262.
132 Xu C, Nakata T, Zheng M Y, et al. In: the 146th TMS Annual Meeting and Exhibition. San Diego: Springer, 2017, pp.23.
133 Kawamura Y, Hayashi K, Hayashi K, et al. Materials Transactions, 2001, 42(7), 1172.
134 Yamasaki M, Hashimoto K, Hagihara K, et al. Acta Materialia, 2011, 59(9), 3646.
135 Itoi T, Seimiya T, Kawamura Y, et al. Scripta Materialia, 2004, 51(2), 107.
136 Liu H, Bai J, Yan K, et al. Materials & Design, 2016, 93, 9.
137 Tong L B, Li X H, Zhang H J. Materials Science and Engineering: A, 2013, 563, 177.
[1] 付兵, 项利, 乔家龙, 刘静, 仇圣桃. 薄板坯连铸连轧流程制备低温Hi-B钢织构的演变及Goss晶粒的发展[J]. 材料导报, 2022, 36(9): 20120130-8.
[2] 汪勇, 李光强, 刘玉龙, 高洋, 郭小龙, 朱诚意. Nb微合金化对取向硅钢常化板中析出物特征及组织和织构的影响[J]. 材料导报, 2022, 36(7): 20110126-6.
[3] 许骏杰, 康嘉杰, 岳文, 周永宽, 朱丽娜, 付志强, 佘丁顺. 纳秒激光制备Fe基非晶合金涂层表面织构的疏水性研究[J]. 材料导报, 2022, 36(7): 21120134-6.
[4] 仇伟夷, 祝祥辉, 黄伟九, 杨绪盛, 汪鑫. 晶界特征对AA2099铝锂合金疲劳加载分层断裂影响探究[J]. 材料导报, 2022, 36(10): 21030256-5.
[5] 王伟, 王萌, 蔡军, 张浩泽, 史亚鸣, 张晓锋, 黄海广, 王快社. EB炉熔炼TC4钛合金轧制过程中的组织演变与力学性能[J]. 材料导报, 2021, 35(8): 8140-8145.
[6] 刘晓欢, 李彦生, 满意, 王金辉, 徐瑞. 高压扭转制备的Mg-Sm-Ca合金组织演变及时效硬化行为[J]. 材料导报, 2021, 35(6): 6120-6125.
[7] 王丽娜, 何承绪, 孟利, 杨佳欣, 张宁, 郭小龙, 胡卓超, 李国保, 王福明. 升温速率对冷轧超薄取向硅钢再结晶行为的影响[J]. 材料导报, 2021, 35(18): 18170-18175.
[8] 樊立峰, 秦美美, 岳尔斌, 肖丽俊, 何建中. 新能源汽车对无取向硅钢的技术挑战[J]. 材料导报, 2021, 35(15): 15183-15188.
[9] 梁锦钰, 冯运莉, 段阳会, 李杰. 高温退火时间对含铌低温取向电工钢二次再结晶行为的影响[J]. 材料导报, 2021, 35(12): 12141-12146.
[10] 王昕宇, 徐春, 黎雨, 庞灵欢, 王斌君, 陈建斌. 电脉冲拉伸下5052铝合金的变形行为及微观组织和织构演变[J]. 材料导报, 2020, 34(24): 24097-24103.
[11] 钟兵, 邢志国, 王海斗, 吕晓仁, 黄艳斐, 郭伟玲, 张仲. 织构化表面摩擦学性能的研究进展[J]. 材料导报, 2020, 34(23): 23171-23178.
[12] 赵磊杰, 马立峰, 韩廷状, 范沁红. 变形镁合金轧制成形研究进展[J]. 材料导报, 2020, 34(21): 21135-21145.
[13] 王小鹏, 李晓延, 吴奇, 徐洲. 织构对6061-T6铝合金X射线应力测试精度的影响机理[J]. 材料导报, 2020, 34(20): 20081-20085.
[14] 郭丽丽, 苑菁茹, 汪建强, 李永兵. ZK60镁合金中空型材挤压成形的有限元模拟及组织和性能[J]. 材料导报, 2020, 34(2): 2072-2076.
[15] 刘晓燕, 张琪, 高飞龙, 杨西荣, 罗雷, 柳奎君. 复合变形制备超细晶工业纯钛的研究进展[J]. 材料导报, 2020, 34(19): 19111-19116.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed