Please wait a minute...
材料导报  2022, Vol. 36 Issue (9): 20120130-8    https://doi.org/10.11896/cldb.20120130
  金属与金属基复合材料 |
薄板坯连铸连轧流程制备低温Hi-B钢织构的演变及Goss晶粒的发展
付兵1, 项利2,*, 乔家龙2, 刘静1, 仇圣桃2
1 武汉科技大学省部共建耐火材料与冶金国家重点实验室,武汉 430081
2 中国钢研科技集团有限公司连铸技术国家工程研究中心,北京 100081
Evolution of Texture and Development of Goss Grains in High Permeability Grain Oriented Silicon Steel Produced by TSCR Process
FU Bing1, XIANG Li2,*, QIAO Jialong2, LIU Jing1, QIU Shengtao2
1 State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
2 National Engineering Research Center of Continuous Casting Technology, China Iron and Steel Research Institute Group, Beijing 100081, China
下载:  全 文 ( PDF ) ( 6791KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对薄板坯连铸连轧流程结合同步脱碳与渗氮工艺所制备的低温Hi-B钢,采用电子背散射衍射和X射线衍射技术系统研究了流程工序中主要织构组分及其含量、分布的演变特征,探讨了位向较为准确的Goss取向晶粒的发展过程。研究结果表明,热轧与常化板均以{001}〈110〉—{112}〈110〉的α织构为主,且沿板厚方向织构分布不均匀,板中与标准{110}〈001〉位向差不大于5°的高斯晶粒基本位于整个板厚的1/10~1/4处,含量仅约为0.1%。冷轧板以{001}〈110〉—{223}〈110〉的α织构为主,且取向密度明显增大。经835 ℃同步脱碳与渗氮处理后,渗氮板中{001}〈120〉、{114}〈481〉与{110}〈001〉织构的取向密度及晶粒含量明显提升,α织构的取向密度及晶粒含量大幅降低,但板中与标准{110}〈001〉位向差不大于5°的高斯晶粒的分布位置及含量基本未发生变化。同时与渗氮板中其他取向晶粒相比,位向差不大于10°的Goss取向晶粒在尺寸、数量和Σ3—Σ9晶界含量方面均不占优势,但在高能晶界含量方面具有极为明显的优势,即在Goss取向晶粒发生二次再结晶的初始阶段,高能晶界可能会起到较为关键的作用。经高温退火后,磁性能优异的成品板主要为单一的高斯织构,同时高斯织构聚集的锋锐程度较高,且其与标准{110}〈001〉位向的偏离角约为3°。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
付兵
项利
乔家龙
刘静
仇圣桃
关键词:  高磁感取向硅钢  薄板坯  同步脱碳与渗氮  织构  Goss晶粒  高能晶界    
Abstract: Based on low-temperature high permeability grain-oriented silicon steel produced by thin slab casting and rolling process with simultaneous decarburization and nitriding, the evolution characteristics of the main texture components and their area fractions and distribution were studied by means of EBSD and XRD. The development of Goss grains with relatively accurate orientation along the processing route was also investigated. It is found that the texture components of hot-rolled band and normalized band are mainly α fiber textures from {001}〈110〉 to {112}〈110〉, and the texture distribution is inhomogeneous along the thickness direction. Moreover, the Goss grains within 5° misorientation against the stan-dard {110}〈001〉 are basically located at 1/10—1/4 of the entire band thickness, and the area fraction is only about 0.1%. The texture components of cold-rolled sheet are still mainly α fiber textures from {001}〈110〉 to {223}〈110〉, but the intensities are enhanced significantly. After simutaneous decarburization and nitriding treatment at 835 ℃, the intensities and area fractions of {001}〈120〉, {114}〈481〉 and {110}〈001〉 textures in the nitrided sheet are increased obviously, while the α fiber textures are the opposite. However, the distribution position and area fraction of the Goss grains within 5° misorientation are basically unchanged. Furthermore, compared with other specified orientation grains within 10° misorientation in the nitrided sheet, the Goss grains are not dominant in size, area fraction and proportion of Σ3—Σ9 grain boundaries, but have extremely obvious advantage in the proportion of high energy grain boundaries, which means, in the initial stage of secondary recrystallization of Goss grains, the high energy grain boundaries may play the more critical role. After secondary recrystallization annealing, the final product with excellent magnetic properties is mainly a sharp Goss texture. And the misorientation angle is about 3° against the standard {110}〈001〉.
Key words:  high permeability grain-oriented silicon steel    thin slab    simutaneous decarburization and nitriding    texture    Goss grain    high energy grain boundary
出版日期:  2022-05-10      发布日期:  2022-05-09
ZTFLH:  TG142.77  
基金资助: 国家重点研发计划(2016YFB0300305)
通讯作者:  genghao65@126.com   
作者简介:  付兵,武汉科技大学材料科学与工程流动站博士后。2017年6月毕业于钢铁研究总院与北京科技大学,获得冶金工程专业博士学位。博士及博士后期间主要从事硅钢生产技术开发及相关理论研究。
项利,钢铁研究总院高级工程师。2008年6月在钢铁研究总院获得冶金工程专业博士学位。主要从事硅钢领域的基础理论研究、应用技术开发和技术服务等工作,在国内外学术期刊发表论文50余篇,授权的发明专利8项。
引用本文:    
付兵, 项利, 乔家龙, 刘静, 仇圣桃. 薄板坯连铸连轧流程制备低温Hi-B钢织构的演变及Goss晶粒的发展[J]. 材料导报, 2022, 36(9): 20120130-8.
FU Bing, XIANG Li, QIAO Jialong, LIU Jing, QIU Shengtao. Evolution of Texture and Development of Goss Grains in High Permeability Grain Oriented Silicon Steel Produced by TSCR Process. Materials Reports, 2022, 36(9): 20120130-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20120130  或          http://www.mater-rep.com/CN/Y2022/V36/I9/20120130
1 Qiu S T, Fu B, Xiang L, et al. Iron and Steel, 2013, 48(3), 1(in Chinese).
仇圣桃, 付兵, 项利, 等. 钢铁, 2013, 48(3), 1.
2 Li X H, Meng X T, Zhao P F, et al. China Metallurgy, 2019, 29(1), 1(in Chinese).
黎先浩, 孟小涛, 赵鹏飞, 等. 中国冶金, 2019, 29(1), 1.
3 Lee C S, Han C H, Woo J S. U.S. patent, US6451128B1, 2002.
4 朱炯暾, 朴钟泰, 金昌洙, 等. 中国专利, CN101568653A, 2009.
5 Han K S, Joo H D, Park J T, et al. U.S. patent, US0002772A1, 2018.
6 Qiu S T, Xiang L, Yue E B, et al. Iron and Steel, 2008, 43(9), 1(in Chinese).
仇圣桃, 项利, 岳尔斌, 等. 钢铁, 2008, 43(9), 1.
7 Fu B, Qiu S T, Xiang L, et al. Materials Reports A: Review Papers, 2013, 27(4), 110(in Chinese).
付兵, 仇圣桃, 项利, 等. 材料导报: 综述篇, 2013, 27(4), 110.
8 Xiang L, Chen S L, Pei Y H, et al. In: Proceedings of the 11th CSM Steel Congress, S10 Electrical Steel. Beijing,2017,pp.69(in Chinese).
项利, 陈圣林, 裴英豪, 等. 第十一届中国钢铁年会, S10电工钢. 北京, 2017, pp.69.
9 陈圣林, 方泽民, 骆忠汉, 等. 中国专利, CN102517429A, 2012.
10 Woo J S, Han C H, Cha S Y. CAMP-ISIJ, 2001, 14(3), 591.
11 Chang S K, Hong B D. ISIJ International, 2004, 44(6), 1086.
12 Wang H J, Fu B, Xiang L, et al. Journal of Iron and Steel Research, International, 2016, 23(10), 1080.
13 Xiang L, Rong Z, Fu B, et al. Journal of Iron and Steel Research, International, 2017, 24(12), 1215.
14 He Z Z. Electrical steel,Metallurgical Industry Press, China,1997(in Chinese).
何忠治. 电工钢, 冶金工业出版社, 1997.
15 Kumano T, Haratani T, Ushigami Y. ISIJ International, 2003, 43(5), 736.
16 Liu Z Q, Yang P, Mao W M, et al. Acta Metallurgica Sinica, 2015, 51(7), 769(in Chinese).
刘志桥, 杨平, 毛卫民, 等. 金属学报, 2015, 51(7), 769.
17 Liu G T, Liu Z Q, Yang P, et al. Journal of Iron and Steel Research, International, 2016, 23(11), 1234.
18 Yasuda M, Kataoka T, Ushigami Y, et al. ISIJ International, 2018, 58(10), 1893.
19 He C X, Yang F Y, Meng L, et al. Materials Reports B: Research Papers, 2018, 32(2), 606(in Chinese).
何承绪, 杨富尧, 孟利, 等. 材料导报: 研究篇, 2018, 32(2), 606.
20 Matsuo M. ISIJ International, 1989, 29(10), 809.
21 Suzuki S, Ushigami Y, Homma H, et al. Materials Transactions, 2001, 42(6), 994.
22 Böttcher A, Lücke K. Acta Metallurgica et Materialia, 1993, 41(8), 2503.
23 Mao W M, Yang P. Material science principles on electrical steels, Higher Education Press, China, 2013(in Chinese).
毛卫民, 杨平. 电工钢的材料学原理, 高等教育出版社, 2013.
24 Dorner D, Zaefferer S, Lahn L, et al. Journal of Magnetism and Magne-tic Materials, 2006, 304(2), 183.
25 Park H K, Kim S J, Han H N, et al. Materials Transactions, 2010, 51(9), 1547.
26 Samajdar I, Cicale S, Verlinden B, et al. Scripta Materialia, 1998, 39(8), 1083.
27 Harase J, Shimizu R, Dingley D J. Acta Metallurgica et Materialia, 1991, 39(5), 763.
28 Shimizu R, Harase J. Acta Metallurgica, 1989, 37(4), 1241.
29 Lin P, Palumbo G, Harase J, et al. Acta Materialia, 1996, 44(12), 4677.
30 Hayakawa Y, Szpunar J A. Acta Materialia, 1997, 45(3), 1285.
31 Rajmohan N, Szpunar J A, Hayakawa Y. Acta Materialia, 1999, 47(10), 2999.
32 Hayakawa Y, Kurosawa M. Acta Materialia, 2002, 50(18), 4527.
33 Harase J, Kurosawa F, Ushigami Y, et al. Journal of the Japan Institute of Metals, 1995, 59(9), 917.
34 Ushigami Y, Nakayama T, Suga Y, et al. Materials Science Forum, 1996, 204-206, 605.
35 Woo J S, Han C H, Hong B D, et al. Acta Materialia, 1998, 46(14), 4905.
[1] 汪勇, 李光强, 刘玉龙, 高洋, 郭小龙, 朱诚意. Nb微合金化对取向硅钢常化板中析出物特征及组织和织构的影响[J]. 材料导报, 2022, 36(7): 20110126-6.
[2] 许骏杰, 康嘉杰, 岳文, 周永宽, 朱丽娜, 付志强, 佘丁顺. 纳秒激光制备Fe基非晶合金涂层表面织构的疏水性研究[J]. 材料导报, 2022, 36(7): 21120134-6.
[3] 王伟, 王萌, 蔡军, 张浩泽, 史亚鸣, 张晓锋, 黄海广, 王快社. EB炉熔炼TC4钛合金轧制过程中的组织演变与力学性能[J]. 材料导报, 2021, 35(8): 8140-8145.
[4] 刘晓欢, 李彦生, 满意, 王金辉, 徐瑞. 高压扭转制备的Mg-Sm-Ca合金组织演变及时效硬化行为[J]. 材料导报, 2021, 35(6): 6120-6125.
[5] 王丽娜, 何承绪, 孟利, 杨佳欣, 张宁, 郭小龙, 胡卓超, 李国保, 王福明. 升温速率对冷轧超薄取向硅钢再结晶行为的影响[J]. 材料导报, 2021, 35(18): 18170-18175.
[6] 樊立峰, 秦美美, 岳尔斌, 肖丽俊, 何建中. 新能源汽车对无取向硅钢的技术挑战[J]. 材料导报, 2021, 35(15): 15183-15188.
[7] 梁锦钰, 冯运莉, 段阳会, 李杰. 高温退火时间对含铌低温取向电工钢二次再结晶行为的影响[J]. 材料导报, 2021, 35(12): 12141-12146.
[8] 王昕宇, 徐春, 黎雨, 庞灵欢, 王斌君, 陈建斌. 电脉冲拉伸下5052铝合金的变形行为及微观组织和织构演变[J]. 材料导报, 2020, 34(24): 24097-24103.
[9] 钟兵, 邢志国, 王海斗, 吕晓仁, 黄艳斐, 郭伟玲, 张仲. 织构化表面摩擦学性能的研究进展[J]. 材料导报, 2020, 34(23): 23171-23178.
[10] 赵磊杰, 马立峰, 韩廷状, 范沁红. 变形镁合金轧制成形研究进展[J]. 材料导报, 2020, 34(21): 21135-21145.
[11] 王小鹏, 李晓延, 吴奇, 徐洲. 织构对6061-T6铝合金X射线应力测试精度的影响机理[J]. 材料导报, 2020, 34(20): 20081-20085.
[12] 郭丽丽, 苑菁茹, 汪建强, 李永兵. ZK60镁合金中空型材挤压成形的有限元模拟及组织和性能[J]. 材料导报, 2020, 34(2): 2072-2076.
[13] 刘晓燕, 张琪, 高飞龙, 杨西荣, 罗雷, 柳奎君. 复合变形制备超细晶工业纯钛的研究进展[J]. 材料导报, 2020, 34(19): 19111-19116.
[14] 秦芳诚, 齐会萍, 李永堂, 武永红, 亓海全, 刘崇宇. 环形零件短流程铸辗复合成形技术研究进展[J]. 材料导报, 2020, 34(19): 19152-19165.
[15] 杨西荣, 郝凤凤, 罗雷, 刘晓燕, 马炜杰, 王立元. 大角度ECAP变形模具制备纯钛的变形织构演化模拟[J]. 材料导报, 2020, 34(16): 16077-16082.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed