Please wait a minute...
材料导报  2022, Vol. 36 Issue (14): 22040007-7    https://doi.org/10.11896/cldb.22040007
  高熵合金* |
非等原子Alx(FeCoNiCr)88-xMn12高熵合金的微观组织及力学性能
赵堃1, 孛海娃1,2, 艾桃桃1,2, 廖仲尼1,2, 丁镠1,2, 冯小明1,2
1 陕西理工大学材料科学与工程学院,陕西 汉中 723000
2 陕西理工大学矿渣综合利用环保技术国家地方联合工程实验室,陕西 汉中 723000
Microstructure and Mechanical Properties of Non-equiato Alx(FeCoNiCr)88-xMn12 High-entropy Alloys
ZHAO Kun1, BO Haiwa1,2, AI Taotao1,2, LIAO Zhongni1,2, DING Liu1,2, FENG Xiaoming1,2
1 School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China
2 National & Local Joint Engineering Laboratory for Environmental Protection Technology for Comprehensive Utilization of Slag, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China
下载:  全 文 ( PDF ) ( 8737KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过干法球磨-真空热压烧结-退火工艺制备了Alx(FeCoNiCr)88-xMn12(x=0、4、12、24)高熵合金,研究了不同Al含量及退火温度对合金组织及力学性能的影响。结果表明:Alx(FeCoNiCr)88-xMn12合金均形成了FCC+BCC双相组织,并且随着Al含量的增加,BCC相增多。Al4(FeCoNiCr)84-Mn12合金具有较佳的综合力学性能,其压缩屈服强度为572.7 MPa,极限抗压强度达1 759.3 MPa,断裂应变为39.9%;合金经650 ℃退火1 h后力学性能得到改善,BCC相中的织构特征更加明显。Al4(FeCoNiCr)84Mn12合金优异的力学性能归因于第二相的强化作用和Hall-Petch效应,以及BCC相中小角度晶界的调节作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵堃
孛海娃
艾桃桃
廖仲尼
丁镠
冯小明
关键词:  高熵合金(HEAs)  微观组织  力学性能  第二相强化  织构    
Abstract: Alx(FeCoNiCr)88-xMn12 (x=0,4,12,24) high-entropy alloys were prepared by dry ball milling, vacuum hot-pressing sintering and annealing process. The effect of different Al content and annealing temperature on the microstructure and mechanical properties of the alloys was stu-died. The results show that Alx(FeCoNiCr)88-xMn12 HEAs were composed of FCC+BCC dual phases, and the BCC phases increased with the increase of Al content. The Al4(FeCoNiCr)84Mn12 alloy had higher comprehensive mechanical properties, the compressive yield strength was 572.7 MPa, the ultimate compressive strength was 1 759.3 MPa and the fracture strain was 39.9%. The mechanical properties of the alloy were further improved and the texture in BCC phases was more pronounced after annealing at 650 ℃ for 1 h. The excellent mechanical properties of the Al4(FeCoNiCr)84Mn12 alloy are attributed to the second-phase strengthening and Hall-Petch effect, and the adjustment effect of small angle grain boundaries of BCC phases.
Key words:  high-entropys alloys (HEAs)    microstructure    mechanical properties    second-phase strengthening    texture
发布日期:  2022-07-26
ZTFLH:  TG146.2  
基金资助: 陕西理工大学科研项目(SLG1906);陕西理工大学人才项目(SLGQD1801)
通讯作者:  aitaotao0116@126.com   
作者简介:  赵堃,陕西理工大学实验员,2011年本科毕业于南昌大学,获得材料成型及控制工程工学学士学位;2019年至今在陕西理工大学材料加工工程专业攻读硕士,研究方向为金属材料强韧化研究。
艾桃桃,陕西理工大学教授,博士,博士研究生导师。2004年本科毕业于陕西科技大学,2007年硕士研究生毕业于陕西科技大学,2007年至今在陕西理工大学工作,2015年博士研究生毕业于陕西科技大学。其团队主要研究方向包括金属强韧化技术、高熵合金、新能源及环境技术。负责完成科研项目20余项,包括国家自然科学基金项目。获厅局级以上科技奖励20余项。发表学术论文160余篇,授权专利30余项。已培养硕士研究生10余名。
引用本文:    
赵堃, 孛海娃, 艾桃桃, 廖仲尼, 丁镠, 冯小明. 非等原子Alx(FeCoNiCr)88-xMn12高熵合金的微观组织及力学性能[J]. 材料导报, 2022, 36(14): 22040007-7.
ZHAO Kun, BO Haiwa, AI Taotao, LIAO Zhongni, DING Liu, FENG Xiaoming. Microstructure and Mechanical Properties of Non-equiato Alx(FeCoNiCr)88-xMn12 High-entropy Alloys. Materials Reports, 2022, 36(14): 22040007-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040007  或          http://www.mater-rep.com/CN/Y2022/V36/I14/22040007
1 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6, 299.
2 Yeh J W. European Journal of Control, 2006, 31(6), 633.
3 Yeh J W, Chen Y L, Lin S J, et al. Materials Science Forum, 2007, 560, 1.
4 Liu Y, Cao Y K, Wu W Q, et al. The Chinese Journal of Nonferrous Metals, 2019, 29, 2155(in Chinese).
刘咏, 曹远奎, 吴文倩, 等. 中国有色金属学报, 2019, 29, 2155.
5 Wang W T, Chen S Y, Zhang Y, et al. Materials Reports, 2021, 35(17), 8(in Chinese).
王伟彤, 陈淑英, 张勇,等. 材料导报, 2021, 35(17), 8.
6 Ma S G, Zhang Y. Materials Science and Engineering A, 2012, 532(15), 480.
7 Takeuchi A, Inoue A. Materials Transactions, 2005, 46(12), 2817.
8 Yang T, Xia S, Liu S, et al. Materials Science and Engineering A, 2015, 648, 15.
9 He J Y, Liu W H, Wang H, et al. Acta Materialia, 2014, 62(1), 105.
10 Liu D, Yu P, Gong L, et al. Materials Science and Engineering: A, 2018, 724(2), 283.
11 Zhou Y J, Zhang Y, Wang F J, et al. Applied Physics Letters, 2008, 92(24), 299.
12 Sheng G, Ng C, Jian L, et al. Journal of Applied Physics, 2011, 109(10), 213.
13 Łukasz R,Damian K; Lidia L D. Intermetallics, 2017, 86, 104.
14 Hadraba H, Chlup Z, Dlouhy A, et al. Materials Science and Enginee-ring A, 2017, 689, 252.
15 Ji W, Wang W M, Wang H, et al. Intermetallics, 2015, 56, 24.
16 Xia Z B, Chen W P, Jiang Z F, et al. The Chinese Journal of Nonferrous Metals, 2020, 30(5), 1049(in Chinese).
夏泽邦, 陈维平, 蒋珍飞, 等. 中国有色金属学报,2020,30(5),1049.
17 Wu B Y, Chen W P, Jiang Z F, et al. Materials Science and Engineering A, 2016, 676, 492.
18 Lu S Y, Miao J W, Lu Y P. Chinese Journal of Rare Metals, 2021, 45(5), 530(in Chinese).
卢思颖, 苗军伟, 卢一平. 稀有金属, 2021, 45(5), 530.
19 Liu W H, Wu Y, He J Y, et al. Scripta Materialia, 2013, 68, 526.
20 Sun S J, Tian Y Z, Lin H R, et al. Materials and Design, 2017, 133, 122.
21 Li L. The Research on crystal characteristics of typical materials with electron backscattered diffraction technics.Master's Thesis, Tianjin University, China, 2008(in Chinese).
李莉. 典型材料晶体学特性的电子背散射技术的研究. 硕士学位论文, 天津大学, 2008.
22 Wang W W, Tian Q W, Wang Y L. Heat Treatment of Metals, 2020, 45(11), 133(in Chinese).
王文文, 田权伟, 王轶农. 金属热处理, 2020, 45(11), 133.
23 Wang H W, He Z F, Jia N. Acta Metallurgica Sinica, 2021, 57(5), 632(in Chinese).
王洪伟, 何竹风, 贾楠. 金属学报, 2021, 57(5), 632.
[1] 张曦挚, 崔红, 胡杨, 邓红兵, 王昊. SiC-ZrC陶瓷含量对C/C-SiC-ZrC复合材料性能的影响[J]. 材料导报, 2022, 36(Z1): 21120073-5.
[2] 张雷, 李姗姗, 庄毅, 唐毓婧, 罗欣. 碳纤维与玻-碳层间混杂2.5维机织复合材料的力学性能对比研究[J]. 材料导报, 2022, 36(Z1): 21100025-5.
[3] 王鹏. 机场道面混凝土性能提升研究[J]. 材料导报, 2022, 36(Z1): 22040083-4.
[4] 唐凌霄, 姚华彦, 徐马云龙, 刘玉亭, 陈传明, 周璟, 吴叙言. 蒸压加气混凝土板研究与应用综述[J]. 材料导报, 2022, 36(Z1): 22030150-4.
[5] 马帅, 金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用[J]. 材料导报, 2022, 36(Z1): 22030217-5.
[6] 成俊辰, 赵志曼, 张晖, 全思臣, 吴磊, 廖仕雄. 稻壳磷建筑石膏抹灰砂浆技术性能研究[J]. 材料导报, 2022, 36(Z1): 21090274-5.
[7] 阎亚雯, 余竹焕, 高炜, 费祯宝, 刘旭亮, 王晓慧. 共晶高熵合金力学性能的研究进展[J]. 材料导报, 2022, 36(Z1): 21050264-7.
[8] 于江, 丁红瑜, 耿遥祥, 许俊华, 宰春凤. 选区激光熔化金属零件后处理技术研究进展[J]. 材料导报, 2022, 36(Z1): 22010033-9.
[9] 郭瑞琪, 王秀琦, 刘国怀, 李天瑞, 王昭东. Ti-44Al-5Nb-1Mo-(V,B)合金热变形过程中的相变、再结晶行为及组织调控[J]. 材料导报, 2022, 36(Z1): 22010111-6.
[10] 史天宇, 孔维雄, 陈雨琳, 宁保群, 董治中. 新型高氮马氏体耐热铸钢的热处理及相变解析[J]. 材料导报, 2022, 36(Z1): 20120084-6.
[11] 周港明, 杭美艳, 路兰, 王浩, 蒋明辉. 风积沙3D打印砂浆材料参数与各向异性研究[J]. 材料导报, 2022, 36(9): 21020081-5.
[12] 李伟, 曹睿, 闫英杰. 不同热处理态下粉末冶金花纹钢的组织性能及拉伸断裂行为[J]. 材料导报, 2022, 36(9): 21020104-7.
[13] 付兵, 项利, 乔家龙, 刘静, 仇圣桃. 薄板坯连铸连轧流程制备低温Hi-B钢织构的演变及Goss晶粒的发展[J]. 材料导报, 2022, 36(9): 20120130-8.
[14] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[15] 杨来东, 李全安, 陈晓亚, 兖利鹏. Mg-Sm系镁合金的研究进展[J]. 材料导报, 2022, 36(7): 20070180-9.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed