Please wait a minute...
材料导报  2022, Vol. 36 Issue (14): 22050073-6    https://doi.org/10.11896/cldb.22050073
  高熵合金* |
原位自生碳化物增强CoCrFeNi高熵合金的显微组织与力学性能
陈瑞润1,2, 陈秀刚1, 高雪峰2, 秦刚2, 宋强1, 崔洪芝1
1 山东科技大学材料科学与工程学院,山东 青岛 266500
2 哈尔滨工业大学材料科学与工程学院,哈尔滨 150001
Microstructure and Mechanical Properties of In-situ Carbides Reinforced CoCrFeNi High-entropy Alloys
CHEN Ruirun1,2, CHEN Xiugang1, GAO Xuefeng2, QIN Gang2, SONG Qiang1, CUI Hongzhi1
1 School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266500, Shandong, China
2 School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
下载:  全 文 ( PDF ) ( 5670KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了提高面心立方(FCC)相高熵合金的强度,将Ti和C元素添加到FCC单相CoCrFeNi高熵合金中以实现强化效应。利用真空电弧熔炼法制备(CoCrFeNi)100-x(TiC)x (x=0、2、4、6、8(原子分数,%))高熵合金,研究了不同含量的Ti和C元素对CoCrFeNi合金显微组织和力学性能的影响。结果表明,添加Ti和C元素后,合金的微观结构由单一的FCC相转变为FCC基体相和原位自生富Ti碳化物,富Ti碳化物的形成并未改变基体相类型。富Ti碳化物沿着枝晶间凝固,呈片层状并相互连接形成网状组织。随着Ti和C含量的增加,FCC基体相含量逐渐降低,富Ti碳化物体积分数逐渐增大至12%。拉伸测试结果表明,随着富Ti碳化物含量的增加,合金的屈服强度和抗拉强度不断提高,延伸率呈下降趋势,当x=8时,抗拉强度从409 MPa(x=0)提升到618 MPa,同时合金能维持可应用的塑性,延伸率可达15.7%。硬度测试结果表明,随着富Ti碳化物含量的增加,合金的硬度呈上升趋势,当x=8时,硬度值为253HV0.2。原位自生富Ti碳化物产生的第二相强化、固溶强化和枝晶间片层状、网状组织的协同效应使合金强度得到提升,同时合金还保持了较好的塑性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈瑞润
陈秀刚
高雪峰
秦刚
宋强
崔洪芝
关键词:  高熵合金  碳化物  微观组织  力学性能  固溶强化    
Abstract: In order to strengthen FCC-type high-entropy alloy (HEA), Ti and C were added to FCC single-phase CoCrFeNi HEA to realize the strengthening effect. (CoCrFeNi)100-x(TiC)x(x=0, 2, 4, 6, 8(atomic fraction,%)) was prepared by vacuum arc melting. Effects of different contents of Ti and C on the microstructure and mechanical properties of CoCrFeNi HEA were studied. The results show that after adding Ti and C, the microstructure of (CoCrFeNi)100-x(TiC)x changes from single FCC phase to FCC matrix phase and in-situ Ti-rich carbides. The formation of Ti-rich carbides does not change the type of matrix phase. Ti-rich carbides solidify along the interdendrite, which is lamellar and connected with each other to form a network structure. With the increase of Ti and C content, the content of FCC matrix phase gradually decreases, and the vo-lume fraction of Ti-rich carbides gradually increases to 12%. The tensile test results show that with the increase of Ti-rich carbides content, the yield strength and tensile strength of the alloy increase continuously, while the elongation decreases; with x=8, the tensile strength can be increased from 409 MPa (x=0) to 618 MPa, with the applicable plasticity maintained, and the elongation can still reach 15.7%. The hardness test results show that the hardness of the alloy increases with the increase of Ti rich carbides content; with x=8, the hardness value is 253HV0 2. The second phase strengthening of in-situ Ti-rich carbides, solid solution strengthening and the synergistic effect of dendritic lamellar and network structure improve the strength of the alloy and ensures its good plasticity.
Key words:  high-entropy alloy    carbide    microstructure    mechanical property    solid solution strengthening
发布日期:  2022-07-26
ZTFLH:  TG139  
基金资助: 国家自然科学基金(51825401)
通讯作者:  ruirunchen@hit.edu.cn; xiaoao7730@163.com   
作者简介:  陈瑞润,哈尔滨工业大学材料加工工程专业教授、博士研究生导师,国家杰出青年基金获得者,万人计划科技创新领军人才,教育部新世纪优秀人才。1995—1999年,获山东工业大学(现山东大学)铸造学士学位。1999—2001年,获哈尔滨工业大学材料加工工程硕士学位。2001—2005年,获哈尔滨工业大学材料加工工程博士学位。2005—2007年,西北工业大学材料科学与工程博士后。2008—2009年,英国伯明翰学冶金与材料学院博士后。研究方向为电磁冷坩埚优化设计与制备(电磁效率优化以及坩埚内电磁场、温度场和流场的耦合与规律)、钛铝基合金定向凝固工艺与理论(电磁冷坩埚定向凝固、陶瓷坩埚定向、籽晶法定向)、钛铝基合金组织性能优化(合金化、超声细化、固态置氢、快速凝固、复合材料等)、铸造工艺与理论。
宋强,博士,副教授,硕士研究生导师。1999年毕业于山东工业大学焊接工艺与设备专业,获得学士学位;2002年毕业于兰州理工大学材料加工工程专业,获得工学硕士学位;2003年进入山东科技大学工作,期间就读于中国石油大学(华东)化工过程机械专业,并获得工学博士学位。主要从事金属材料表面改性、先进材料焊接等教学和科研工作。
引用本文:    
陈瑞润, 陈秀刚, 高雪峰, 秦刚, 宋强, 崔洪芝. 原位自生碳化物增强CoCrFeNi高熵合金的显微组织与力学性能[J]. 材料导报, 2022, 36(14): 22050073-6.
CHEN Ruirun, CHEN Xiugang, GAO Xuefeng, QIN Gang, SONG Qiang, CUI Hongzhi. Microstructure and Mechanical Properties of In-situ Carbides Reinforced CoCrFeNi High-entropy Alloys. Materials Reports, 2022, 36(14): 22050073-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050073  或          http://www.mater-rep.com/CN/Y2022/V36/I14/22050073
1 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6, 299.
2 Cantor B, Chang I T H, Knight P, et al. Materials Science & Engineering A, 2004, 375, 213.
3 Zhang W, Liaw P K, Zhang Y.Science China Materials,2018,61(1),2.
4 Zhang Y, Zuo T T, Tang Z, et al. Progress in Materials Science, 2014, 61, 1.
5 Gao X F, Chen R R, Liu T, et al. Journal of Materials Science,2022,57,6573.
6 Ye Y X, Liu C Z, Wang H, et al. Acta Materialia, 2018, 147, 78.
7 Du Y H, Ding D Y, Guo N, et al. Materials Reports, 2021, 35(17), 17051(in Chinese).
杜宇航,丁德渝,郭宁, 等. 材料导报, 2021, 35(17), 17051.
8 Qiu Y, Thomas S, Fabijanic D, et al. Materials & Design, 2019, 170, 107698.
9 Lu Y P, Huang H F, Gao X Z, et al. Journal of Materials Science & Technology, 2019, 35(3), 369.
10 Ye Y F, Wang Q, Lu J, et al. Materials Today, 2016, 19(6), 349.
11 Miracle D B, Senkov O N.Acta Materialia, 2017, 122, 448.
12 Zhao Y, Wang M L, Cui H Z, et al. Journal of Alloys and Compounds, 2019, 805, 585.
13 Yang X, Zhang Y.Materials Chemistry and Physics,2012,132(2-3),233.
14 Zhang Y, Zuo T T, Tang Z, et al. Progress in Materials Science, 2014, 61, 1.
15 Senkov O N, Miller J D, Miracle D B, et al. Nature Communications, 2015, 6(1), 1.
16 Liu W H, Lu Z P, He J Y, et al. Acta Materialia, 2016, 116, 332.
17 Qin G, Xue W T, Chen R R, et al. Materialia, 2019, 6, 100259.
18 Fu Z Q, Chen W P, Wen H M, et al. Acta Materialia, 2016, 107, 59.
19 Wang W T, Chen S Y, Zhang Y, et al. Materials Reports, 2021, 35(17), 17043(in Chinese).
王伟彤, 陈淑英, 张勇, 等. 材料导报, 2021, 35(17), 17043.
20 Zhang G J, Li R, Liu D H, et al. Materials Reports, 2021, 35(17), 17026(in Chinese).
张国家, 李忍, 刘德华, 等. 材料导报, 2021, 35(17), 17026.
21 Qin G, Chen R R, Zheng H T, et al. Journal of Materials Science & Technology, 2019, 35(4), 578.
22 Wang M L, Lu Y P, Zhang G J, et al. Vacuum, 2021, 184, 109905.
23 Li Z J, Fu P X, Hong C F, et al. Materials Today Communications, 2020, 26, 102095.
24 Zhang G P, Wang G F, Yang T H, et al. Materials Science and Technology, 2020, 36(4), 409.
25 Zhao C M, Zhu H G, Xie Z H.Intermetallics, 2022, 140, 107398.
26 Yang S H, Qu Y D, Zhang Y F, et al. Special-Cast and Non-Ferrous Alloys, 2019, 39(7), 701(in Chinese).
杨思华,曲迎东,张宇峰,等. 特种铸造及有色合金,2019,39(7),701.
27 Zhang J F, Jia T, Qiu H, et al. Journal of Materials Science & Technology, 2020, 42(7), 122.
28 Zhang Y, Zhou Y J, Lin J P, et al. Advanced Engineering Materials, 2008, 10(6), 534
29 Takeuchi A, Inoue A.Materials Transactions, 2005, 46(12), 2817.
30 Huang H, Tian Y, Yuan G Y, et al. Materials Characterization, 2015, 108, 132.
[1] 张曦挚, 崔红, 胡杨, 邓红兵, 王昊. SiC-ZrC陶瓷含量对C/C-SiC-ZrC复合材料性能的影响[J]. 材料导报, 2022, 36(Z1): 21120073-5.
[2] 温希平, 唐帅, 彭庆, 张宪法, 李林鲜, 刘振宇, 王国栋. NaCl型过渡金属碳化物稳定性及力学性质的第一性原理计算[J]. 材料导报, 2022, 36(Z1): 21090072-6.
[3] 张雷, 李姗姗, 庄毅, 唐毓婧, 罗欣. 碳纤维与玻-碳层间混杂2.5维机织复合材料的力学性能对比研究[J]. 材料导报, 2022, 36(Z1): 21100025-5.
[4] 王鹏. 机场道面混凝土性能提升研究[J]. 材料导报, 2022, 36(Z1): 22040083-4.
[5] 唐凌霄, 姚华彦, 徐马云龙, 刘玉亭, 陈传明, 周璟, 吴叙言. 蒸压加气混凝土板研究与应用综述[J]. 材料导报, 2022, 36(Z1): 22030150-4.
[6] 马帅, 金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用[J]. 材料导报, 2022, 36(Z1): 22030217-5.
[7] 成俊辰, 赵志曼, 张晖, 全思臣, 吴磊, 廖仕雄. 稻壳磷建筑石膏抹灰砂浆技术性能研究[J]. 材料导报, 2022, 36(Z1): 21090274-5.
[8] 阎亚雯, 余竹焕, 高炜, 费祯宝, 刘旭亮, 王晓慧. 共晶高熵合金力学性能的研究进展[J]. 材料导报, 2022, 36(Z1): 21050264-7.
[9] 于江, 丁红瑜, 耿遥祥, 许俊华, 宰春凤. 选区激光熔化金属零件后处理技术研究进展[J]. 材料导报, 2022, 36(Z1): 22010033-9.
[10] 郭瑞琪, 王秀琦, 刘国怀, 李天瑞, 王昭东. Ti-44Al-5Nb-1Mo-(V,B)合金热变形过程中的相变、再结晶行为及组织调控[J]. 材料导报, 2022, 36(Z1): 22010111-6.
[11] 史天宇, 孔维雄, 陈雨琳, 宁保群, 董治中. 新型高氮马氏体耐热铸钢的热处理及相变解析[J]. 材料导报, 2022, 36(Z1): 20120084-6.
[12] 高梦锞, 魏世忠, 吴巧合, 袁智康, 熊美. (Fe,Cr)7C3/MoC界面电子特性的第一性原理研究[J]. 材料导报, 2022, 36(9): 21020149-6.
[13] 周港明, 杭美艳, 路兰, 王浩, 蒋明辉. 风积沙3D打印砂浆材料参数与各向异性研究[J]. 材料导报, 2022, 36(9): 21020081-5.
[14] 李伟, 曹睿, 闫英杰. 不同热处理态下粉末冶金花纹钢的组织性能及拉伸断裂行为[J]. 材料导报, 2022, 36(9): 21020104-7.
[15] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed