Please wait a minute...
材料导报  2022, Vol. 36 Issue (9): 21020149-6    https://doi.org/10.11896/cldb.21020149
  无机非金属及其复合材料 |
(Fe,Cr)7C3/MoC界面电子特性的第一性原理研究
高梦锞1, 魏世忠1,2, 吴巧合1, 袁智康3, 熊美1,2,*
1 河南科技大学材料科学与工程学院,河南 洛阳 471003
2 金属材料磨损控制与成型技术国家地方联合工程研究中心, 河南 洛阳 471003
3 燕山大学亚稳材料制备技术与科学国家重点实验室,高压科学中心,河北 秦皇岛 066004
First-principles Study on Electronic Properties of (Fe,Cr)7C3/MoC Interface
GAO Mengke1, WEI Shizhong1,2, WU Qiaohe1, YUAN Zhikang3, XIONG Mei1,2,*
1 College of Material Science and Technology, Henan University of Science and Technology, Luoyang 471003, Henan,China
2 National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials, Luoyang 471003,Henan, China
3 Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, Hebei, China
下载:  全 文 ( PDF ) ( 3006KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作采用第一性原理平面波赝势的方法,从原子尺度系统探讨了Mo元素对过共晶Fe-Cr-C合金的作用机理,丰富了合金元素对抗磨钢铁材料作用机理的理论数据库。通过构建(Fe,Cr)7C3和MoC的晶体结构和表面模型,计算了各晶体的体相特征,经表面能判定标准确定了各表面模型的原子层数,在此基础上建立了(Fe,Cr)7C3(0001)/MoC(111)界面结构模型,并计算了该界面的稳定性以及电子结构特性等。计算结果表明:采用以Mo终止的五层MoC(111)表面模型和13层(Fe,Cr)7C3(0001)表面模型构建(Fe,Cr)7C3(0001)/MoC(111)界面模型,该界面模型的理想界面结合功为7.47 J/m2,说明该界面在理论上是稳定的,界面结合强度较好。此外,(Fe,Cr)7C3(0001)/MoC(111)界面是由极性共价、离子键和金属键连接,表明界面原子间结合强度较高,(Fe,Cr)7C3可以吸附在MoC上,同时MoC作为 (Fe,Cr)7C3碳化物的异质形核核心可以细化过共晶Fe-Cr-C合金中的主要硬质相晶粒,从而提高过共晶Fe-Cr-C合金的耐磨性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高梦锞
魏世忠
吴巧合
袁智康
熊美
关键词:  (Fe,Cr)7C3/MoC界面  过共晶Fe-Cr-C合金  M7C3碳化物  第一性原理    
Abstract: In this work, the first-principles plane-wave pseudopotential method was used to systematically explore the mechanism of Mo on hypereutectic Fe-Cr-C alloys from the atomic scale, enriching the theoretical database of the mechanism of alloying elements for anti-wear steel materials. By constructing the crystal structure and surface model of (Fe,Cr)7C3 and MoC, the bulk characteristics of each crystal were calculated, and the atomic layer number of each surface model was determined by the surface energy criterion. On this basis, the (Fe,Cr)7C3(0001)/MoC(111) interface structure model was established, and the stability and electronic structure characteristics of the interface were calculated. The calculation results show that the 5-layer MoC(111) surface model with Mo-terminated and the 13-layer (Fe,Cr)7C3(0001) surface model should be adopted to construct the (Fe,Cr)7C3(0001)/MoC(111) interface model. By calculation, the ideal interface bonding work of the (Fe,Cr)7C3(0001)/MoC(111) interface model is 7.47J/m2, indicating that the interface is theoretically stable and the interface bonding strength is good. It shows that (Fe,Cr)7C3 can be adsorbed on MoC, and MoC as the heterogeneous nucleation core of (Fe,Cr)7C3 carbide can refine the main hard phase grains in the hypereutectic Fe-Cr-C alloy, thereby improving the wear resistance of the hypereutectic Fe-Cr-C alloy.
Key words:  (Fe,Cr)7C3/MoC interface    hypereutectic Fe-Cr-C alloy    M7C3 carbide    first-principles
出版日期:  2022-05-10      发布日期:  2022-05-09
ZTFLH:  TB331  
基金资助: 国家自然科学基金(52002118)
通讯作者:  xiongmei_1327@163.com   
作者简介:  高梦锞,2018年9月考入河南科技大学材料科学与工程研究生院,主要研究方向为第一性原理计算以及相关界面领域。
熊美,2018年毕业于燕山大学材料科学与工程学院,获工学博士学历,现任河南科技大学金属材料磨损控制与成型技术国家地方联合工程研究中心副教授。主要研究方向为第一性原理和表面界面等领域,主持和参加多项科研项目,在国内外等杂志发表多篇文章。
引用本文:    
高梦锞, 魏世忠, 吴巧合, 袁智康, 熊美. (Fe,Cr)7C3/MoC界面电子特性的第一性原理研究[J]. 材料导报, 2022, 36(9): 21020149-6.
GAO Mengke, WEI Shizhong, WU Qiaohe, YUAN Zhikang, XIONG Mei. First-principles Study on Electronic Properties of (Fe,Cr)7C3/MoC Interface. Materials Reports, 2022, 36(9): 21020149-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21020149  或          http://www.mater-rep.com/CN/Y2022/V36/I9/21020149
1 Rickli J L, Dasgupta A K, Dinda G P. International Journal of Rapid Manufacturing, 2014, 4(2/3/4), 199.
2 Zikin A, Hussainova I, Katsich C, et al. Surface & Coatings Technology, 2012, 206(19-20), 4270.
3 Zhang H W, Zhang S, Wang Y C, et al. Iop Conference, 2020, 861(1), 012046.
4 Liu S, Shi Z, Xing X, et al. Materials Today Communications, 2020, 24, 101232.
5 Zhang Z X, Zhou Z F, Shan Q, et al. Materials Reports, 2019(Z1),362(in Chinese).
张哲轩, 周再峰, 山泉, 等. 材料导报, 2019(Z1),362.
6 Qi X, Jia Z, Yang Q, et al. Surface & Coatings Technology, 2011, 205(23-24), 5510.
7 Liu S, Zhou Y F, Xing X L, et al. Journal of Alloys and Compounds, 2017, 691, 239.
8 Chen Z, Chen J, Han P, et al. Computational Materials Science, 2014, 83, 298.
9 Wang X, Zhong C G, Li Y, et al. Materials Reports B: Research Par-pers, 2020, 34(2), 72(in Chinese).
王鑫, 仲崇贵, 李桦, 等. 材料导报:研究篇, 2020, 34(2), 72.
10 Liu C, Mi G F, Wang Y C, et al. Rare Metau and Cemented Carbides, 2019(1), 47(in Chinese).
刘晨, 米国发, 王有超, et al. 稀有金属与硬质合金, 2019(1), 47.
11 Li M, Yang C B, Zhang J, et al. Materials Reports A: Review Papers, 2020, 34(11), 129(in Chinese).
李萌, 杨成博, 张静, 等. 材料导报:综述篇, 2020, 34(11), 129.
12 Clark S J, Segall M D, Pickard C J, et al. Zeitschrift Für Kristallograp-hie, 2005, 220(5),37.
13 Perdew J P, Wang Y. Physical Review B Condensed Matter, 1992, 45(23), 13244.
14 Vanderbilt, David. Physical Review B Condensed Matter, 1990, 41(11), 7892.
15 Fischer T H, Almlof J. Journal of Physical Chemistry, 1992, 96(24), 9768.
16 Zhang P, Zhou Y, Yang J, et al. Journal of Alloys & Compounds, 2013, 560, 49.
17 Xie J Y, Chen N X, Shen J, et al. Acta Materialia,2005,53(9),2727.
18 Cui J, Guo L, Lu H, et al. Wear An International Journal on the Science & Technology of Friction Lubrication & Wear, 2017, 367-377, 584.
19 Wang J, Qi X, Xing X, et al. Materials Research Express, 2019, 6(8), 865.
20 Zhou W, Liu L, Li B, et al. Computational Materials Science, 2009, 46(4), 921.
21 Wu Z J, Zhao E J, Xiang H P, et al. Physical Review B, 2007, 76(5), 054115.
22 Ranganathan S I, Ostoja-Starzewski M. Physical Review Letters, 2008, 101(5), 055504.
23 Tian Y, Bo X, Zhao Z. International Journal of Refractory Metals & Hard Materials, 2012, 33(none), 93.
24 Jang J H, Kim I G, Bhadeshia H K D H. Computational Materials Science, 2009, 44(4), 1319.
25 Gilman J J, Roberts B W. Journal of Applied Physics,1961,32(7),1405.
26 Li Y, Gao Y, Bing X, et al. Journal of Alloys & Compounds, 2011, 509(17), 5242.
27 Kowalski B. Journal of Applied Crystallography,1985,18(6),430.
28 Wang Y, Zhou Y, Liu X P, et al. AIP Advances,2020,10(12),125220.
29 Hang Z Q. Study on high temperature resistance and interface first-principles calculation of rare earth modified WC-Co Coatings. Maser's Thesis, Southwest Jiaotong University, 2018(in Chinese).
杭宗秋. 稀土改性WC/Co涂层的抗高温性能及界面第一性原理计算的研究.硕士学位论文,西南交通大学, 2018.
[1] 卢学峰, 王宽, 崔志红. 掺杂(硅、锗、锡)单壁碳纳米管的第一性原理研究[J]. 材料导报, 2022, 36(9): 20120188-5.
[2] 郑棋文, 范同祥. 液/固晶面润湿性实验与模拟研究方法[J]. 材料导报, 2022, 36(9): 21010025-12.
[3] 肖美霞, 冷浩, 姚婷珍, 王磊, 何成. 电场调控范德华异质薄膜能隙的第一性原理研究:单层SiC沉积在表面氢化的BN薄膜上[J]. 材料导报, 2022, 36(8): 20080062-6.
[4] 曾奕瑾, 宗朔通. 第一性原理在钙钛矿中的应用研究进展[J]. 材料导报, 2022, 36(8): 20080229-6.
[5] 杨绍斌, 刘雪丽,张旭, 唐树伟. 羟基化平板孔中水合钠离子去溶剂化的第一性原理计算[J]. 材料导报, 2022, 36(1): 20110132-7.
[6] 仲光洪, 汪丽莉, 杨稳. 电池负极材料Ti3C2M2 MXene表面修饰及Li存储能力的第一性原理计算研究[J]. 材料导报, 2021, 35(Z1): 15-20.
[7] 宋庆功, 董珊珊, 胡烨, 康建海, 严慧羽, 王明超, 刘志锋. Mo掺杂对γ-TiAl基合金能量稳定性和抗氧化性的影响[J]. 材料导报, 2021, 35(2): 2057-2063.
[8] 吴方棣, 胡家朋, 杨自涛, 郑辉东. Ag-O-N共掺杂闪锌矿ZnS光催化性质的第一性原理研究[J]. 材料导报, 2021, 35(18): 18012-18017.
[9] 解忧, 曹松, 吴秀, 于冰艺, 王素芳. 双层石墨烯掺杂Pd对CO和NO的气敏特性研究[J]. 材料导报, 2021, 35(18): 18035-18039.
[10] 刘俊男, 宋述鹏, 胡冬冬, 周和荣, 吴润. 单层WxMo1-xS2合金电子和光学性质的第一性原理研究[J]. 材料导报, 2021, 35(14): 14040-14044.
[11] 王金朋, 薛志超, 马颖, 李洁, 刘思丹, 孙红. 基于第一性原理的锂空气电池Si掺杂MoS2正极催化氧还原反应机理研究[J]. 材料导报, 2021, 35(10): 10001-10007.
[12] 杜颖妍, 陈婷, 贾倩, 李越, 毋志民. 新型稀磁半导体Mn掺LiBeP的磁电性质调控[J]. 材料导报, 2021, 35(10): 10013-10016.
[13] 简单, 朱燮刚, 刘瑜, 宋海峰, 赖新春. U和UO2状态方程研究进展[J]. 材料导报, 2021, 35(1): 1082-1095.
[14] 孙绍琦, 王景芹, 朱艳彩, 张广智, 包志舟. 第一性原理分析La、W共掺杂SnO2的导电性[J]. 材料导报, 2020, 34(Z1): 48-52.
[15] 徐允, 张兆春, 郭海波, 谢耀平. 铟-镧系元素(La,Ce,Pr和Nd)金属间化合物磁学和热力学性质的第一性原理计算[J]. 材料导报, 2020, 34(2): 2093-2099.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed