Please wait a minute...
材料导报  2022, Vol. 36 Issue (17): 21030274-6    https://doi.org/10.11896/cldb.21030274
  无机非金属及其复合材料 |
铝土尾矿泡沫轻质土的物理力学性能及细观特征
彭远胜1,2,3, 欧孝夺2,*, 姬凤玲1,3
1 深圳大学土木与交通工程学院,广东 深圳518060
2 广西大学土木建筑工程学院,南宁 530004
3 深圳大学未来地下城市研究院,广东 深圳518060
Physical and Mechanical Properties and Meso-characteristics of Foamed Mixture Lightweight Soil with Bauxite Tailings
PENG Yuansheng1,2,3, OU Xiaoduo2,*, JI Fengling1,3
1 College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, Guangdong,China
2 College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China
3 Underground Polis Academy, Shenzhen University, Shenzhen 518060, Guangdong, China
下载:  全 文 ( PDF ) ( 7364KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了降低泡沫轻质土生产成本并促进其在土木工程中的广泛应用,本工作提出将大量废弃的铝土尾矿泥用于制备泡沫轻质土的方法,并通过开展铝土尾矿泡沫轻质土合成正交试验,对铝土尾矿泡沫轻质土流动度、湿密度及无侧限抗压强度的影响因素进行敏感性分析,揭示面积孔隙率对铝土尾矿泡沫轻质土物理力学性能的影响规律,并建立相互之间的关系式。研究结果表明,铝土尾矿泡沫轻质土湿密度和无侧限抗压强度的最大影响因素是泡沫掺量,其次是水泥掺量,铝土尾矿泥掺量影响最小;湿密度从450 kg/m3增加至1 080 kg/m3时,面积孔隙率由97.65%降至57.15%,面积孔隙率随湿密度的增加呈指数型减小;随着铝土尾矿泡沫轻质土面积孔隙率的增加,28 d无侧限抗压强度呈指数型减小,而体积吸水率呈线性增加。研究结果为铝土尾矿泥在泡沫轻质土中的应用提供了配合比参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
彭远胜
欧孝夺
姬凤玲
关键词:  铝土尾矿泥  泡沫轻质土  抗压强度  面积孔隙率    
Abstract: In order to reduce production costs and promote the application of foamed mixture lightweight soil (FMLS) in the field of civil engineering, a large number of waste bauxite tailings (BTs) were added to FMLS. Orthogonal tests were carried out to study the properties of foamed mixture lightweight soil with bauxite tailings (FMLSB), sensitivity analysis was conducted to investigate the influence factors of fluidity, wet density, and unconfined compressive strength of FMLSB. The effects of area porosity on the physical and mechanical properties of the FMLSB were discussed and analyzed, and the relationships were established. Results indicated that foam content was the largest factor affecting the wet density and unconfined compressive strength of the FMLSB, followed by cement content, and the smallest was BTs content. With the increase of wet density, the area porosity decreased exponentially. In detail, as the wet density increased from 450 kg/m3 to 1 080 kg/m3, the area porosity decreased from 97.65% to 57.15%. With the increase of area porosity of FMLSB, the 28 d unconfined compressive strength decreased exponentially, but the volumetric water absorption increased linearly. Research results provide a scientific reference for the application of FMLSB.
Key words:  bauxite tailings (BTs)    foamed mixture lightweight soil (FMLS)    compressive strength    area porosity
出版日期:  2022-09-10      发布日期:  2022-09-10
ZTFLH:  U414  
基金资助: 国家自然科学基金(51768006)
通讯作者:  *ouxiaoduo@163.com   
作者简介:  彭远胜,深圳大学土木与交通工程学院副研究员。2020年6月毕业于广西大学,获得工学博士学位。主要从事环境岩土工程等方面的科研工作。发表学术论文14篇,授权实用新型专利7项。
欧孝夺,广西大学土木建筑工程学院教授、博士研究生导师。2004年6月毕业于广西大学,获得工学博士学位。主要从事环境岩土工程、尾矿库安全治理等方面的教学和科研工作。发表学术论文120余篇,授权国家发明专利7项、实用新型专利44项。
引用本文:    
彭远胜, 欧孝夺, 姬凤玲. 铝土尾矿泡沫轻质土的物理力学性能及细观特征[J]. 材料导报, 2022, 36(17): 21030274-6.
PENG Yuansheng, OU Xiaoduo, JI Fengling. Physical and Mechanical Properties and Meso-characteristics of Foamed Mixture Lightweight Soil with Bauxite Tailings. Materials Reports, 2022, 36(17): 21030274-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030274  或          http://www.mater-rep.com/CN/Y2022/V36/I17/21030274
1 Kim Y T, Ahn J, Han W J, et al. Journal of Materials in Civil Enginee-ring, 2010, 22(5), 539.
2 Li Z L, Zhang K F. Applied Mechanics and Materials, 2012, 204-208, 1622.
3 Chen Z P, Wang S L, Deng J. New technology for foamed mixture lightweight soil filling engineering, China Communications Press, China,2004 (in Chinese).
陈忠平, 王树林, 邓江. 气泡混合轻质填土新技术, 人民交通出版社, 2004.
4 Shi X, Huang J, Su Q. Construction and Building Materials, 2020, 250(9), 118897.
5 Liu M B, Liao S M, Chen L S, et al. Chinese Journal of Geotechnical Engineering, 2020, 42(11), 2006 (in Chinese).
刘孟波, 廖少明, 陈立生, 等.岩土工程学报, 2020, 42(11), 2006.
6 Otani J, Mukunoki T, Kikuchi Y. Soils and Foundations, 2002, 42(3), 93.
7 He G J, Ding Z Z, Zheng Y R. Chinese Journal of Underground Space and Engineering, 2009, 5(1), 18 (in Chinese).
何国杰, 丁振洲, 郑颖人. 地下空间与工程学报, 2009, 5(1), 18.
8 Horpibulsuk S, Suddeepong A, Chinkulkijniwat A, et al. Applied Clay Science, 2012, 69, 11.
9 She W, Du Y, Zhao G, et al. Construction and Building Materials, 2018, 170, 153.
10 Wee T H, Babu D S, Tamilselvan T, et al. ACI Materials Journal, 2006, 103(1), 45.
11 Zhang Z, Provis J L, Reid A, et al. Cement and Concrete Composites, 2015, 62, 97.
12 Kearsley E P, Wainwright P J. Cement & Concrete Research, 2002, 32(2), 233.
13 Jones M R, Mccarthy A. Magazine of Concrete Research, 2005, 57(1), 21.
14 Jones M R, Mccarthy A. Fuel, 2005, 84(11), 1398.
15 Nambiar E K K, Ramamurthy K. Cement and Concrete Composites, 2006, 28(5), 475.
16 Dong J M, Wang P, Chai S X. Journal of Building Materials, 2011, 14(4), 576 (in Chinese).
董金梅, 王沛, 柴寿喜. 建筑材料学报, 2011, 14(4), 576.
17 Hilal A A, Thom N H, Dawson A R. International Journal of Engineering and Technology, 2015, 7(4), 286.
18 Cong M, Bing C. Construction & Building Materials, 2015, 76, 61.
19 Wang D F, Wang L M. Journal of Functional Materials, 2016, 47(6), 6200 (in Chinese).
王滌非, 王路明. 功能材料, 2016, 47(6), 6200.
20 Wang W B, Zhao W H, Su Q, et al. Railway Engineering, 2017(2), 146 (in Chinese).
王武斌, 赵文辉, 苏谦, 等. 铁道建筑, 2017(2), 146.
21 Mei L F, Xu G L. Acta Materiae Compositae Sinica, 2016, 33(10), 2355 (in Chinese).
梅利芳, 徐光黎. 复合材料学报, 2016, 33(10), 2355.
22 Makul N, Sua-Iam G. Journal of Cleaner Production, 2016, 126, 118.
23 Ou X D, Mo P, Jiang J, et al. Chinese Journal of Geotechnical Enginee-ring, 2020, 42(4), 624 (in Chinese).
欧孝夺, 莫鹏, 江杰, 等. 岩土工程学报, 2020, 42(4), 624.
24 Su J, Cao F Z, Song H N, et al. Journal of Basic Science and Enginee-ring, 2020, 28(5), 1224 (in Chinese).
苏建, 曹斐姝, 宋海农, 等. 应用基础与工程科学学报, 2020, 28(5), 1224.
25 CJJ/T 177-2012,Technical specification for foamed mixture lightweight soil filling engineering, Ministry of Housing and Urban-Rural Development of the People's Republic of China, 2012 (in Chinese).
CJJ/T 177-2012, 气泡混合轻质土填筑工程技术规程, 中华人民共和国住房和城乡建设部, 2012.
26 Ramamurthy K, Nambiar E K K, Ranjani G I S. Cement & Concrete Composites, 2009, 31(6), 388.
27 Peng Y, Jiang J, Ou X, et al. Advances in Materials Science and Engineering, 2019, 2019, 1.
28 Song Q, Zhang P, Bao J W, et al. Journal of the Chinese Ceramic Society, 2021(2), 1 (in Chinese).
宋强, 张鹏, 鲍玖文, 等. 硅酸盐学报, 2021(2), 1.
[1] 郑超, 朱本谦, 陈清蓉, 杨泽波, 刘勇. 基于水泥熟料与矿物掺合料制备新胶凝材料体系[J]. 材料导报, 2022, 36(Z1): 21100177-3.
[2] 王晓娇, 戚承志, 周理安, 李太行, 陈昊祥, 王泽帆, 马啸宇, 封焱杰, 罗伊. 掺再生微粉的城墙内芯土渗透性和强度研究[J]. 材料导报, 2022, 36(Z1): 21100220-6.
[3] 王俊辉, 黄悦, 杨国涛, 魏琦安, 刘文卓. 再生混凝土抗压性能研究进展[J]. 材料导报, 2022, 36(Z1): 21100033-9.
[4] 陈瑞明, 向阳开, 梁路, 赵毅. 冻融循环与预应力共同作用下混凝土抗压强度试验研究[J]. 材料导报, 2022, 36(Z1): 21120009-5.
[5] 龙朝飞, 张戎令, 段运, 郭海贞, 肖鹏震, 段亚伟. 基于成熟度理论持续负温下不同入模温度工况的混凝土强度预测模型[J]. 材料导报, 2022, 36(6): 20100044-8.
[6] 刘鑫, 田轶轩, 黄金凤, 万城铭, 杨宏宇, 万朝均. 用于地聚合物的粉煤灰活性评价研究[J]. 材料导报, 2022, 36(2): 21010007-7.
[7] 吴贤国, 王雷, 陈虹宇, 冯宗宝, 覃亚伟, 徐文胜. 基于随机森林-NSGAⅡ高性能混凝土耐久性配合比的多目标优化研究[J]. 材料导报, 2022, 36(17): 20110015-7.
[8] 侯永强, 尹升华, 曹永, 杨世兴, 张敏哲. 尾砂胶结充填体单轴受压应力-应变关系及其损伤本构模型[J]. 材料导报, 2022, 36(16): 21010265-8.
[9] 董瑞鑫, 申向东, 薛慧君, 刘倩, 维利思, 慕儒. 风积沙混凝土的气泡参数对其强度的影响[J]. 材料导报, 2022, 36(12): 21010006-5.
[10] 杨玉柱, 黄维蓉, 耿嘉庆, 崔通, 晏茂豪. 基于半经验的UHPC配合比设计方法[J]. 材料导报, 2021, 35(z2): 188-193.
[11] 葛洁雅, 朱红光, 李宗徽, 李为健, 沈正艳, 侯金良, 杨森. 煤矸石粗骨料-地聚物混凝土的力学与耐久性能研究[J]. 材料导报, 2021, 35(z2): 218-223.
[12] 席雅允, 沈玉, 刘娟红, 吴瑞东, 许鹏玉. 化学激发对煤气化渣-水泥体系抗压强度影响机理研究[J]. 材料导报, 2021, 35(z2): 262-267.
[13] 代金芯, 石宵爽, 王清远, 张红恩, 栾晨晨, 张宽裕, 杨富花. 多因素对再生复合掺料基地聚物混凝土抗压强度的影响[J]. 材料导报, 2021, 35(9): 9077-9082.
[14] 龚建清, 罗鸿魁, 张阳, 龚啸, 谢泽酃, 吴五星, 戴远帆. 减缩剂和HCSA膨胀剂对UHPC力学性能和收缩性能的影响[J]. 材料导报, 2021, 35(8): 8042-8048.
[15] 史金华, 史才军, 欧阳雪, 刘剑辉, 黄勇, 吴泽媚. 超高性能混凝土受压弹性模量研究进展[J]. 材料导报, 2021, 35(3): 3067-3075.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed