Please wait a minute...
材料导报  2022, Vol. 36 Issue (19): 20120243-11    https://doi.org/10.11896/cldb.20120243
  无机非金属及其复合材料 |
压阻式柔性应变传感器研究进展
张蕾, 李博, 高阳
华东理工大学机械与动力工程学院,上海 200237
Research Progress of Piezoresistive Flexible Strain Sensors
ZHANG Lei, LI Bo, GAO Yang
School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
下载:  全 文 ( PDF ) ( 7881KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在信息时代,传感器已渗透到各个领域。压阻式柔性应变传感器因其优良的柔韧性、可拉伸/弯曲性以及在异形物体表面的“随形”贴合性,在智能穿戴、人机交互、结构服役过程监测等领域发挥了重要作用。
压阻式柔性应变传感器一般有填充式、夹层式和吸附式三种结构,三种结构在制备复杂程度、重复性及传感性能等方面均有差异。研究者们多采用传统方法实现结构构筑,但传统方法普遍存在操作复杂、成本高、重复性差等问题,而采用新兴的3D打印技术可以高效、高精度、可重复地构筑传感结构,赋予了传感器更大的发展空间。在构筑压阻式柔性应变传感器时需采用柔性基体材料和导电填料,构筑得到的传感器主要有裂纹扩展、导电网络断开和隧穿效应三种传感机制,传感机制的形成与传感器的微观结构和材料有关。另外,压阻式柔性应变传感器的传感性能通常通过灵敏度、传感范围、耐久性等参数来表征,而如何兼具多项优异性能是目前的研究热点。同时,压阻式柔性应变传感器的配套器件和技术是限制其发展的主要因素,尤其是在供电和信号传输方面。
本文归纳了压阻式柔性应变传感器在材料选择、结构构筑、机理探索、性能优化、应用开发等方面的研究进展,分析了压阻式柔性应变传感器目前所面临的问题并展望其前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张蕾
李博
高阳
关键词:  柔性应变传感  压阻式  柔性基体  导电填料  传感机制  3D打印    
Abstract: In the information age, sensors are already utilized in a variety of fields. Owing to excellent flexibility, stretchability/bendability and conformability on the curved surface of special-shaped objects, the piezoresistive flexible strain sensor plays a vital role in the fields of smart wear, human-computer interaction and structural service process monitoring.
Generally, the piezoresistive flexible strain sensors have three different structures, including filling structure, sandwich structure and adsorption structure, which significantly differs in preparation complexity, repeatability, and sensing performance. Traditional preparation methods are usually employed to achieve structural construction. However, the disadvantages are obvious, e.g. complex operation, high cost and poor repeatability. With the rapid development of 3D printing technology, 3D printing can be used to prepare strain sensors efficiently, accurately and reproductively, which in turn promotes the development of sensors. Flexible matrix materials and conductive filler are required to prepare piezoresistive flexible strain sensors. Piezoresistive flexible strain sensors typically have three sensing mechanisms: crack propagation, conductive network disconnection and tunneling effect. And it is closely related to the structure and material of piezoresistive flexible strain sensors. Besides, sensing performance of the piezoresistive flexible strain sensor can be characterized by testing the sensitivity, sensing range, durability. However, how to achieve multiple excellent properties at the same time has become a research hotspot. Furthermore, the supporting devices and technologies of piezoresistive flexible strain sensor greatly limit its application, especially in terms of power supply and signal transmission.
This review offers a retrospection of the research efforts with respect to the piezoresistive flexible strain sensors, and provides detailed descriptions of material selection, structure construction, mechanism exploration, performance optimization, and application development. Additionally, the current problems faced by piezoresistive flexible strain sensors and development prospects are assessed.
Key words:  flexible strain sensing    piezoresistive    flexible matrix    conductive filler    sensing mechanism    3D printing
出版日期:  2022-10-10      发布日期:  2022-10-12
ZTFLH:  TB33  
基金资助: 中央高校基本科研业务费专项资金(JKG01211104; JKG01211507)
通讯作者:  libo@ecust.edu.cn   
作者简介:  张蕾,2018年毕业于华东理工大学,获得工学学士学位。现为华东理工大学机械与动力工程学院硕士研究生,在李博副教授的指导下进行研究。目前研究领域为基于3D打印成型的电阻式柔性应变传感器。
李博,华东理工大学机械与动力工程学院,副教授、硕士研究生导师,2009年6月本科毕业于江苏科技大学焊接技术与工程系,2014年6月在南京航空航天大学材料加工工程专业获得工学博士学位。主要从事先进制造方向研究工作,发表论文30余篇,申请/授权专利30余项。
引用本文:    
张蕾, 李博, 高阳. 压阻式柔性应变传感器研究进展[J]. 材料导报, 2022, 36(19): 20120243-11.
ZHANG Lei, LI Bo, GAO Yang. Research Progress of Piezoresistive Flexible Strain Sensors. Materials Reports, 2022, 36(19): 20120243-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20120243  或          http://www.mater-rep.com/CN/Y2022/V36/I19/20120243
1 Zhang M Y, Yang Z H, Wu Z J, et al. Acta Materiae Compositae Sinica, 2020, 37(5), 1024 (in Chinese).
张明艳, 杨振华, 吴子剑, 等.复合材料学报, 2020, 37(5), 1024.
2 Ren Q B, Wang J P, Yang L, et al. Materials Reports A: Review Papers, 2020, 34(1), 1080 (in Chinese).
任秦博, 王景平, 杨立, 等.材料导报:综述篇, 2020, 34(1), 1080.
3 Wu S, Peng S, Yu Y, et al. Advanced Materials Technologies, 2020, 5(2), 1900908.
4 Nie B, Li X, Shao J, et al. ACS Applied Materials & Interfaces, 2017, 9(46), 40681.
5 Slobodian P, Danova R, Olejnik R, et al. Polymers for Advanced Technologies, 2019, 30(7), 1891.
6 Pyo S, Lee J, Kim W, et al. Advanced Functional Materials, 2019, 29(35), 1902484.
7 Wu R, Ma L, Hou C, et al. Small, 2019, 15(31), 1901558.
8 Bingger P, Zens M, Woias P. Biomedical Microdevices, 2012, 14(3), 573.
9 Wang Z, Zhang Q, Yue Y, et al. Nanotechnology, 2019, 30(34), 345501.
10 Peng J, Li J, Li W, et al. New Chemical Materials, 2020, 48(1), 57 (in Chinese).
彭军, 李津, 李伟, 等.化工新型材料, 2020, 48(1), 57.
11 Wu Y T, Pan Z J. Modern Silk Science & Technology, 2019, 34(5), 22 (in Chinese).
吴玉婷, 潘志娟.现代丝绸科学与技术, 2019, 34(5), 22.
12 Park K I, Son J H, Hwang G T, et al. Advanced Materials, 2014, 26(16), 2514.
13 Dagdeviren C, Su Y, Joe P, et al. Nature Communications, 2014, 5(1), 4496.
14 Oshman C, Opoku C, Dahiya A S, et al. Journal of Microelectromechanical Systems, 2016, 24(3), 533.
15 Dahiya A S, Thireau J, Boudaden J, et al. Journal of the Electrochemical Society, 2019, 167(3), 037516.
16 Dahiya A S, Morini F, Boubenia S, et al. Advanced Materials Technologies, 2018, 3(2), 1700249.
17 Sun R, Carreira S C, Chen Y, et al. Advanced Materials Technologies, 2019, 4(5), 1900100.
18 Kou H, Zhang L, Tan Q, et al. Scientific Reports, 2019, 9(18), 937.
19 Jian M, Xia K, Wang Q, et al. Advanced Functional Materials, 2017, 27(9), 1606066.
20 Fu X, Ramos M, Al-Jumaily A M, et al. Journal of Materials Science, 2019, 54(3), 2170.
21 Zhang C, Li H, Huang A, et al. Small, 2019, 15(18), 1805493.
22 Amjadi M, Turan M, Clementson C P, et al. ACS Applied Materials & Interfaces, 2016, 8(8), 5618.
23 Maturos T, Phokaratkul D, Jaruwongrungsee K, et al. In: IEEE International Conference on Nanotechnology. Rome, IEEE, 2015, pp. 1231.
24 Kumar K S, Chen P, Ren H. Research, 2019, 2019, 3018568.
25 Feng P, Wang X, Lu B, et al. Journal of Materials Science, 2019, 54(16), 11134.
26 Amjadi M, Yoon Y J, Park I. Nanotechnology, 2015, 26(37), 375501.
27 Park Y, Majidi C, Kramer R, et al. Journal of Micromechanics and Microengineering, 2010, 20(12), 125029.
28 Chen Y, Li Y, Xu D, et al. RSC Advances, 2015, 5(100), 82034.
29 Gan X, Wang J, Wang Z, et al. Materials & Design, 2019, 178, 107874.
30 Karamvir S, Sandeep S, Shilpi S, et al. Materials Science in Semiconductor Processing, 2021, 123, 105581.
31 Jieun L, Lim M, Jinsu Y, et al. ACS Applied Materials & Interfaces, 2017, 9(31), 26279.
32 Liu H, Li Y, Dai K, et al. Journal of Materials Chemistry C, 2016, 4(1), 157.
33 Samad Y A, Li Y, Alhassan S M, et al. ACS Applied Materials & Interfaces, 2015, 7(17), 9195.
34 Boland C S, Khan U, Backes C, et al. ACS Nano, 2014, 8(9), 8819.
35 Paton K R, Varrla E, Backes C, et al. Nature Materials, 2014, 13(6), 624.
36 Qu M, Qin Y, Xu W, et al. Applied Nanoscience, 2021, 11(2), 429
37 Wang X, Liu X, Schubert D W. Nano-Micro Letters, 2021, 13(4), 165.
38 Yazdani H, Hatami K, Khosravi E, et al. Carbon, 2014, 79, 393.
39 Jiu J, Suganuma K. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2016, 6(12), 1733.
40 Luan J, Wang Q, Zheng X, et al. Micromachines, 2019, 10(6), 372.
41 Wang Z, Zhang L, Liu J, et al. ACS Applied Materials & Interfaces, 2019, 11(5), 5316.
42 Amjadi M, Pichitpajongkit A, Lee S, et al. ACS Nano, 2014, 8(5), 5154.
43 Gong X X, Fei G T, Fu W B, et al. Organic Electronics, 2017, 47, 51.
44 Le T, Kim Y, Yoon H. Polymers, 2017, 9(4), 150.
45 Liu H, Gao J, Huang W, et al. Nanoscale, 2016, 8(26), 12977.
46 Wang S, Xiao P, Liang Y, et al. Journal of Materials Chemistry C, 2018, 6(19), 5140.
47 Duan L, Fu S, Deng H, et al. Journal of Materials Chemistry A, 2014, 2(40), 17085.
48 Chen J, Yu Q, Cui X, et al. Journal of Materials Chemistry C, 2019, 7(38), 11710.
49 Ji M, Deng H, Yan D, et al. Composites Science and Technology, 2014, 92, 16.
50 Dong M, Wang C, Liu H, et al. Macromolecular Materials and Enginee-ring, 2019, 304(5), 1900010.
51 Luo Q, Ma H, Hou Q, et al. Advanced Functional Materials, 2018, 28(11), 1706777.
52 Shi S, Wang L, Pan Y, et al. Composites Part B, 2019, 167, 362.
53 Lin L, Deng H, Gao X, et al. Polymer International, 2013, 62(1), 134.
54 Costa P, Silvia C, Viana J C, et al. Composites Part B, 2014, 57, 242.
55 Wang X, Sun H, Yue X, et al. Composites Science and Technology, 2018, 168, 126.
56 Cao X, Wei X, Li G, et al. Polymer, 2017, 122, 1.
57 Lin L, Liu S, Zhang Q, et al. ACS Applied Materials & Interfaces, 2013, 5(12), 5815.
58 Zheng S, Deng J, Yang L, et al. Composites Science and Technology, 2014, 97, 34.
59 Amjadi M, Kyung K U, Park I, et al. Advanced Functional Materials, 2016, 26(11), 1678.
60 Wajahat M, Lee S, Kim J H, et al. ACS Applied Materials & Interfaces, 2018, 10(23), 19999.
61 Christ J F, Aliheidari N, Ameli A, et al. Materials & Design, 2017, 131, 394.
62 Chen Y, Li J, Tan Y, et al. Composites Science and Technology, 2019, 177, 41.
63 Luo Y, Wu D, Zhao Y, et al. Organic Electronics, 2019, 67, 10.
64 Wang Y, Hao J, Huang Z, et al. Carbon, 2018, 126, 360.
65 Wu T, Chen B. Scientific Reports, 2017, 7(1), 11.
66 Kim K, Park J, Suh J, et al. Sensors and Actuators A: Physical, 2017, 263, 493.
67 Wei S, Zhang L, Li C, et al. Journal of Materials Chemistry C, 2019, 7(22), 6786.
68 Li Z, Wang Z, Gan X, et al. Macromolecular Materials and Engineering, 2017, 302(11), 1700211.
69 Kim K, Choi J, Jeong Y, et al. Advanced Healthcare Materials, 2019, 8(22), 1900978.
70 Al-Rubaiai M, Tsuruta R, Gandhi U, et al. Smart Materials and Structures, 2019, 28(8), 084001.
71 Nag A, Feng S, Mukhopadhyay S C, et al. Sensors and Actuators A: Physical, 2018, 280, 525.
72 Zhuo B, Chen S, Zhao M, et al. IEEE Journal of the Electron Devices Society, 2017, 5(3), 219.
73 He S, Feng S, Nag A, et al. Sensors, 2020, 20(3), 703.
74 Nag A, Afasrimanesh N, Feng S, et al. Sensors & Actuators A: Physical, 2018, 271, 257.
75 Davoodi E, Montazerian H, Haghniaz R, et al. ACS Nano, 2020, 14(2), 1520.
76 Agarwala S, Goh G L, Yap Y L, et al. Sensors & Actuators A: Physical, 2017, 263, 593.
77 Li Q, Li J, Tran D, et al. Journal of Materials Chemistry C, 2017, 5(42), 11092.
78 Zhou J, Xu X, Xin Y, et al. Advanced Functional Materials, 2018, 28(16), 1705591.
79 Zheng Y, Li Y, Li Z, et al. Composites Science and Technology, 2017, 139(8), 64.
80 Sun H, Dai K, Zhai W, et al. ACS Applied Materials & Interfaces, 2019, 11(39), 36052.
81 Gao Y, Fang X, Tan J, et al. Nanotechnology, 2018, 29(23), 235501.
82 Yu G, Hu J, Tan J, et al. Nanotechnology, 2018, 29(11), 185602.
83 Cui Z, Han Y, Huang Q, et al. Nanoscale, 2018, 10(15), 6806.
84 Lu N, Lu C, Yang S, et al. Advanced Functional Materials, 2012, 22(19), 4044.
85 Gao Y, Li Q, Wu R, et al. Advanced Functional Materials, 2019, 29(2), 1806781.
86 Zheng Y, Li Y, Dai K, et al. Composites Science and Technology, 2018, 156, 276.
87 Choi S, Yoon K, Lee S, et al. Advanced Functional Materials, 2019, 29(50), 1905808.
88 Gong S, Lai D T H, Wang Y, et al. ACS Applied Materials & Interfaces, 2015, 7(35), 19700.
89 Ha M, Lim S, Ko H. Journal of Materials Chemistry B, 2018, 6(24), 4043.
90 Kim J, Banks A, Xie Z, et al. Advanced Functional Materials, 2015, 25(30), 4761.
91 Cho I H, Lee J, Kim J, et al. Sensors, 2018, 18(1), 207.
92 Sampath P, Silva E D, Sameera L, et al. Sensors, 2019, 19(2), 3615.
93 Hong S, Lee J, Do K, et al. Advanced Functional Materials, 2017, 27(48), 1704353.
94 Ha M, Lim S, Cho S, et al. ACS Nano, 2018, 12(4), 3964.
[1] 陈杰, 樊正阳, 毛华明, 尹俊刚, 李耀, 代伟, 杨宏伟. 镀银铜纳米颗粒的制备与应用研究进展[J]. 材料导报, 2022, 36(Z1): 21090201-4.
[2] 周港明, 杭美艳, 路兰, 王浩, 蒋明辉. 风积沙3D打印砂浆材料参数与各向异性研究[J]. 材料导报, 2022, 36(9): 21020081-5.
[3] 李兴建, 侯晴, 杨继龙, 范宇飞, 崔秋月, 徐守芳. 电刺激响应形状记忆聚合物复合材料的设计和驱动性能[J]. 材料导报, 2022, 36(6): 20070243-12.
[4] 孙晓燕, 陈龙, 王海龙, 张静. 面向水下智能建造的3D打印混凝土配合比优化研究[J]. 材料导报, 2022, 36(4): 21050230-9.
[5] 崔天龙, 王里, 马国伟, 李之建, 白明科. HB-CSA与膨胀剂对3D打印混凝土收缩开裂性能的影响[J]. 材料导报, 2022, 36(2): 20120078-7.
[6] 许万卫, 白雪, 马健, 刘帅. 超声检测在金属3D打印中的应用研究进展[J]. 材料导报, 2022, 36(18): 21030217-10.
[7] 张科, 叶锦明, 刘享华. 光固化3D打印在复杂裂隙岩体研究中的探索[J]. 材料导报, 2022, 36(17): 20090297-6.
[8] 秦若森, 孙守政, 韩振宇, 张鹏, 富宏亚. 3D打印连续纤维增强热塑性复合材料成型质量的研究进展[J]. 材料导报, 2022, 36(17): 21010246-9.
[9] 刘通, 诸葛祥群, 蓝嘉昕, 耿继业, 罗志虹, 李义兵, 罗鲲. 聚氨酯基压敏材料3D打印结合GaInSn液态金属导线制作柔性压力传感器的研究[J]. 材料导报, 2022, 36(15): 21030297-5.
[10] 王晓晶, 涂龙, 罗晓亮, 王浩旭, 胡振峰, 梁秀兵. 聚合物基材料4D打印研究进展[J]. 材料导报, 2022, 36(14): 20100265-15.
[11] 王志勇, 蔡志祥, 刘国承, 孙智龙, 张铁. HAP-TCP复合生物陶瓷浆料的激光3D打印及性能研究[J]. 材料导报, 2021, 35(Z1): 104-107.
[12] 唐杰, 杨勇, 黄政仁. 碳化硅陶瓷浆料基3D打印研究进展[J]. 材料导报, 2021, 35(Z1): 172-179.
[13] 耿继业, 蓝嘉昕, 刘通, 诸葛祥群, 罗志虹, 李义兵, 罗鲲. 3D打印聚氨酯微流道封装镓基液态金属柔性导线及其性能[J]. 材料导报, 2021, 35(20): 20040-20044.
[14] 杨兆哲, 孔振武, 吴国民, 王思群, 谢延军, 冯鑫浩. 3D打印聚合物纳米复合材料的研究进展[J]. 材料导报, 2021, 35(13): 13177-13185.
[15] 白刚, 王里, 王芳, 程新睿. 3D打印UHPC的制备和力学性能试验研究[J]. 材料导报, 2021, 35(12): 12063-12069.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed