Please wait a minute...
材料导报  2022, Vol. 36 Issue (15): 21030297-5    https://doi.org/10.11896/cldb.21030297
  高分子与聚合物基复合材料 |
聚氨酯基压敏材料3D打印结合GaInSn液态金属导线制作柔性压力传感器的研究
刘通1, 诸葛祥群1, 蓝嘉昕2, 耿继业2, 罗志虹2, 李义兵2, 罗鲲1,*
1 常州大学材料科学与工程学院,江苏 常州 213164
2 桂林理工大学材料科学与工程学院,广西 桂林 541004
Study on the 3D Printing of Flexible Pressure Sensor by Using Polyurethane Pressure Sensitive Materials and Encapsulated GaInSn Liquid Metal Wires
LIU Tong1, ZHUGE Xiangqun1, LAN Jiaxin2, GENG Jiye2, LUO Zhihong2, LI Yibing2, LUO Kun1,*
1 School of Materials Science and Engineering, Changzhou University, Changzhou 213164,Jiangsu, China
2 College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004,Guangxi, China
下载:  全 文 ( PDF ) ( 6176KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着可穿戴器件的发展,柔性压力传感器作为可穿戴器件的重要组成部分受到广泛的关注。为解决柔性压力传感器的制造工艺复杂与在大变形下接触不良的问题,将多壁碳纳米管(MWNTs)、中间相炭微球(MCMB)和聚氨酯(TPU)进行熔融共混制备柔性压敏3D打印材料,使用熔融沉积3D打印技术将压敏材料与绝缘材料一次打印成型柔性压力传感器,并将GaInSn液态金属封装在传感器内部作为导线。实验表明,GaInSn液态金属与MWNTs/MCMB/TPU压敏材料在大变形下接触良好,可以有效传递信号,制备的柔性压力传感器具有良好的压敏特性。同时,3D打印技术可以为小批量、结构复杂的柔性电子器件的个性化制造提供新的思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘通
诸葛祥群
蓝嘉昕
耿继业
罗志虹
李义兵
罗鲲
关键词:  柔性压敏材料  液态金属  柔性压力传感器  3D打印    
Abstract: With the development of wearable devices, flexible pressure sensors have received widespread attention as an important part of wearable devices.In this work, in order to solve the problems of the complex manufacturing process of the flexible pressure sensor and its poor contact under the large deformation, multi-walled carbon nanotubes (MWNTs), mesophase carbon microballs (MCMB) and thermoplastic polyurethane (TPU) were evenly melt blended to prepare flexible pressure sensitive 3D printing materials, pressure sensitive materials and insulating materials were printed into a flexible pressure sensor at one time using melt deposition 3D printing technology, and GaInSn liquid metal was encapsulated in the sensor as a wire. Experiments results show that GaInSn liquid metal and MWNTs/MCMB/TPU pressure sensitive materials are in good contact under large deformation, which can effectively transmit signals, and that the prepared flexible pressure sensor has good pressure sensitive characteristics. At the same time, the 3D printing technology offers a new path for the personalized production of flexible electronics with complex structures in small batches.
Key words:  flexible pressure sensitive material    liquid metal    flexible pressure sensor    3D printing
出版日期:  2022-08-10      发布日期:  2022-08-15
ZTFLH:  TB333  
  TH164  
基金资助: 广西创新驱动发展专项资金项目(桂科AA17204021-7);广西科技计划重点项目(桂科AB17292017)
通讯作者:  *luokun@cczu.edu.cn   
作者简介:  刘通,2018年毕业于太原科技大学,获得材料成型及控制工程专业学士学位。从2018年至今就读于常州大学材料工程专业。目前,研究方向为3D打印功能材料及其应用。
罗鲲,常州大学教授、博士研究生导师,曾于2008—2018年在桂林理工大学任教。分别于2000年、2004年获得中国科学院材料科学与工程专业硕士学位和博士学位。主要从事新能源储能材料研究,已在Adv. Mater.,Chem. Commun.,Chem.Mater.,J. Mater. Chem. A等期刊发表研究论文100余篇。
引用本文:    
刘通, 诸葛祥群, 蓝嘉昕, 耿继业, 罗志虹, 李义兵, 罗鲲. 聚氨酯基压敏材料3D打印结合GaInSn液态金属导线制作柔性压力传感器的研究[J]. 材料导报, 2022, 36(15): 21030297-5.
LIU Tong, ZHUGE Xiangqun, LAN Jiaxin, GENG Jiye, LUO Zhihong, LI Yibing, LUO Kun. Study on the 3D Printing of Flexible Pressure Sensor by Using Polyurethane Pressure Sensitive Materials and Encapsulated GaInSn Liquid Metal Wires. Materials Reports, 2022, 36(15): 21030297-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030297  或          http://www.mater-rep.com/CN/Y2022/V36/I15/21030297
1 Lou Z, Wang L L, Shen G Z. Advanced Materials Technologies, 2018, 3, 1800444.
2 Khosravani M R, Reinicke T. Sensors and Actuators A-Physical, 2020, 305, 111916.
3 Liu C, Huang N, Xu F, et al. Polymers (Basel), 2018, 10(6), 629.
4 Park J, Kim J K, Kim D S, et al. Sensors and Actuators B-Chemical, 2019, 280, 201.
5 Fuh Y K, Wang B S, Tsai C Y. Scientific Reports, 2017, 7(1), 6759.
6 Zhu Z, Park H S, Mcalpine M C. Science Advances, 2020, 6(25), eaba5575.
7 Davoodi E, Montazerian H, Haghniaz R, et al. ACS Nano, 2020, 14(2), 1520.
8 Wang Z, Gao W, Zhang Q, et al. ACS Applied Materials & Interfaces, 2019, 11(1), 1344.
9 Yu X K, Li Y F, Yu H Y. Electronics Letters, 2019, 55(18), 999.
10 Shan X, Mao P S, Li H R, et al. ACS Applied Nano Materials, 2020, 3(2), 969.
11 Wolterink G, Sanders R, Krijnen G, et al. In: 17th IEEE Sensors Conference. New Delhi(IN), 2018, pp. 885.
12 Wang Z Y, Guan X, Huang H Y, et al. Advanced Functional Materials, 2019, 29, 1807569.
13 Gul J Z, Sajid M, Choi K H. Journal of Materials Chemistry C, 2019, 7(16), 4692.
14 Christ J F, Aliheidari N, Ameli A, et al. Materials & Design, 2017, 131, 394.
15 Christ J F, Aliheidari N, Potschke P, et al. Polymers (Basel), 2018, 11, 11.
16 Yin X Y, Zhang Y, Cai X B, et al. Materials Horizons, 2019, 6(4), 767.
17 Emon M O F, Alkadi F, Philip D G, et al. Additive Manufacturing, 2019, 28, 629.
18 Choi Y Y, Ho D H, Cho J H. ACS Applied Materials & Interfaces, 2020, 12(8), 9824.
19 Jiao Y Y, Young C W, Yang S, et al. IEEE Sensors Journal, 2016, 16(22),7870.
20 Kim K, Choi J, Jeong Y, et al. Advanced Healthcare Materials, 2019, 8, 1900978.
21 罗鲲, 蓝嘉昕, 诸葛祥群, 等. 中国专利, CN111964815A, 2020.
22 Chen J, Zhang L, Nan Z, et al. Plastics Science and Technology, 2017, 45(12),61.
[1] 周振豪, 姜勇刚, 冯军宗, 李良军, 冯坚. 直写成型制备多孔陶瓷技术研究进展[J]. 材料导报, 2023, 37(4): 20120004-7.
[2] 刘超, 王有强, 刘化威, 张荣飞. 基于打印参数影响的3D打印混凝土力学性能试验研究[J]. 材料导报, 2023, 37(1): 21110276-7.
[3] 李安敏, 杨树靖, 惠佳琪, 袁子豪, 常大鹏, 黄卓昉, 吴宇. 液态金属的多功能化[J]. 材料导报, 2023, 37(1): 21030212-12.
[4] 程平, 彭勇, 汪馗, 姚松, 刘志祥. 3D打印连续苎麻纤维增强聚乳酸复合材料的准静态侵彻性能[J]. 材料导报, 2023, 37(1): 22010088-6.
[5] 周港明, 杭美艳, 路兰, 王浩, 蒋明辉. 风积沙3D打印砂浆材料参数与各向异性研究[J]. 材料导报, 2022, 36(9): 21020081-5.
[6] 温泽明, 陈剑英, 王越平, 肖红. 镓基液态金属在可穿戴器件与智能服装上的应用研究进展[J]. 材料导报, 2022, 36(9): 20080043-5.
[7] 孙晓燕, 陈龙, 王海龙, 张静. 面向水下智能建造的3D打印混凝土配合比优化研究[J]. 材料导报, 2022, 36(4): 21050230-9.
[8] 刘琛, 李勇, 周文, 吴宜勇, 王岩, 吴跃民, 王芳, 琚丹丹, 闫继宏. 模拟月/火星壤的原位成型技术研究进展[J]. 材料导报, 2022, 36(22): 22050122-7.
[9] 李俊生, 李端, 李学超, 高世涛, 王衍飞, 万帆, 刘荣军. 3D打印天线罩技术研究进展[J]. 材料导报, 2022, 36(22): 22050328-10.
[10] 崔天龙, 王里, 马国伟, 李之建, 白明科. HB-CSA与膨胀剂对3D打印混凝土收缩开裂性能的影响[J]. 材料导报, 2022, 36(2): 20120078-7.
[11] 张蕾, 李博, 高阳. 压阻式柔性应变传感器研究进展[J]. 材料导报, 2022, 36(19): 20120243-11.
[12] 许万卫, 白雪, 马健, 刘帅. 超声检测在金属3D打印中的应用研究进展[J]. 材料导报, 2022, 36(18): 21030217-10.
[13] 张科, 叶锦明, 刘享华. 光固化3D打印在复杂裂隙岩体研究中的探索[J]. 材料导报, 2022, 36(17): 20090297-6.
[14] 秦若森, 孙守政, 韩振宇, 张鹏, 富宏亚. 3D打印连续纤维增强热塑性复合材料成型质量的研究进展[J]. 材料导报, 2022, 36(17): 21010246-9.
[15] 逯海卿, 吴兴丽, 张鹏, 叶超超, 魏文庆. 基于液晶弹性体和液态金属的人造肌肉纤维的制备及分析[J]. 材料导报, 2022, 36(14): 21050105-4.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed