Please wait a minute...
材料导报  2022, Vol. 36 Issue (17): 20090297-6    https://doi.org/10.11896/cldb.20090297
  无机非金属及其复合材料 |
光固化3D打印在复杂裂隙岩体研究中的探索
张科1,2,*, 叶锦明1, 刘享华2
1 昆明理工大学电力工程学院,昆明 650500
2 昆明理工大学建筑工程学院,昆明 650500
Exploration of Stereolithography Apparatus 3D Printing Technology in the Research of Complex Fractured Rock Mass
ZHANG Ke1,2,*, YE Jinming1, LIU Xianghua2
1 Faculty of Electric Power Engineering, Kunming University of Science and Technology, Kunming 650500, China
2 Faculty of Civil and Architectural Engineering, Kunming University of Science and Technology, Kunming 650500, China
下载:  全 文 ( PDF ) ( 5732KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 由于岩体结构的复杂性,如何重构含裂隙网络的物理模型试件是岩石力学试验研究面临的难题之一。本工作提出了一种基于光固化3D打印技术的裂隙网络类岩石试件制备方法。结合数字图像相关方法对裂隙网络类岩石试件加载过程进行非接触式全场变形测量,并引入应变场方差这一指标,定量研究了裂隙岩体变形破坏演化规律及前兆异常特征。试验结果表明:采用光固化3D打印技术可实现裂隙岩体的复杂物理模型重构。裂隙网络类岩石试件的变形破坏过程类似于真实裂隙岩体,可划分为压密、弹性变形、裂纹扩展以及峰后阶段,其应力-应变曲线出现峰后多台阶式跌落特征。综合强度参数、峰后力学特征和试验过程中块体弹射现象来看,制备的3D打印试件可用于模拟裂隙硬岩。采用数字图像相关方法可实现裂隙岩体变形场的动态捕捉,其变形破坏过程表现出明显的应变局部化特征。加载过程中应变场方差的演化过程可划分为初始分异、稳定分异、加速分异以及加加速分异阶段。应变场方差在新生裂纹萌生后呈现出持续增长的趋势,而在进入不稳定裂纹扩展阶段后呈现为陡增趋势,可视为两个前兆点。研究成果可为复杂裂隙岩体的物理重构以及失稳预警提供新的思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张科
叶锦明
刘享华
关键词:  3D打印  光固化  裂隙岩体  裂隙网络  数字图像相关方法  力学特性  变形场    
Abstract: Due to the complexity of rock mass structure, the reconstruction of physical model specimen containing fracture network is one of the key problems in the experimental study of rock mechanics. A method for preparing rock-like specimen containing fracture network based on the stereolithography 3D printing was proposed. The digital image correlation method was used to non-contactly measure the full-field deformation of rock-like specimen containing fracture network during the loading process. The failure evolution law and the precursory anomaly characteristics of fractured rock were quantitatively studied by using the variance of strain field. The results show that the complex physical model of fractured rock can be reconstructed by using the stereolithography 3D printing. The deformation and failure process of rock-like specimen containing fracture network has similar features with natural rocks, which can be divided into four stages including closure, elastic deformation, crack propagation and post-peak stage. The stress-strain curve shows multi-step drops after the stress peak. According to the strength parameters, post-peak mechanical properties and block ejections during the experimental process, the specimen prepared by the stereolithography 3D printing is suitable for simulating fractured hard rock. Strain fields of fractured rock can be dynamically captured by using the digital image correlation method. Strain localization is observed during the deformation and failure process. The variance of strain field in the loading process can be divided into four stages including initial differentiation, stable differentiation, acceleration differentiation and accelerated acceleration differentiation. The variance of strain field presents a trend of stable increase after new crack initiation. Then it presents a sharp increase trend while the specimen is at the unstable crack propagation stage. These can be regarded as two precursor points. The results can provide a new perspective for physical reconstruction and instability early-warning of complex fractured rock masses.
Key words:  3D printing    stereolithography    fractured rock mass    fracture network    digital image correlation method    mechanical characteristic    deformation field
出版日期:  2022-09-10      发布日期:  2022-09-10
ZTFLH:  TU452  
基金资助: 国家自然科学基金(11902128);云南省应用基础研究计划(2018FB093;2019FI012)
通讯作者:  *zhangke_csu@163.com   
作者简介:  张科,昆明理工大学教授、博士研究生导师。2009年6月、2015年6月分别于中南大学获得工学学士学位和博士学位。以第一/通讯作者在国内外学术期刊上发表SCI/EI论文40余篇。研究工作主要围绕脆性材料断裂力学以及无损检测传感与成像,主持包括国家自然科学基金、中国博士后科学基金特别资助等国家级、省部级项目8项。
引用本文:    
张科, 叶锦明, 刘享华. 光固化3D打印在复杂裂隙岩体研究中的探索[J]. 材料导报, 2022, 36(17): 20090297-6.
ZHANG Ke, YE Jinming, LIU Xianghua. Exploration of Stereolithography Apparatus 3D Printing Technology in the Research of Complex Fractured Rock Mass. Materials Reports, 2022, 36(17): 20090297-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090297  或          http://www.mater-rep.com/CN/Y2022/V36/I17/20090297
1 Yang S Q. Rock and Soil Mechanics, 2013, 34(1), 31(in Chinese).
杨圣奇. 岩土力学, 2013, 34(1), 31.
2 Zhang K, Li N, Chen Y L, et al. Rock and Soil Mechanics, 2020(S2), 95(in Chinese).
张科, 李娜, 陈宇龙, 等. 岩土力学, 2020(S2), 95.
3 Wong L N Y, Einstein H H. International Journal of Rock Mechanics and Mining Sciences, 2009, 46, 239.
4 Zhang B, Li S C, Yang X Y, et al. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(9), 1777(in Chinese).
张波, 李术才, 杨学英, 等. 岩石力学与工程学报, 2015, 34(9), 1777.
5 Li L L, Gao Y T, Zhou Y, et al. Rock and Soil Mechanics, 2018, 39(10), 3668(in Chinese).
李露露, 高永涛, 周喻, 等. 岩土力学, 2018, 39(10), 3668.
6 Zhou X P, Wang Y T, Zhang J Z, et al. Rock Mechanics and Rock Engineering, 2019, 52(3), 691.
7 Wang C L, Qi S W. Progress in Geophysics, 2018, 33(2), 842(in Chinese).
汪冲浪, 祁生文. 地球物理学进展, 2018, 33(2), 842.
8 Chen S P, Yi H P, Luo Z H, et al. Material Reports A:Review Papers, 2016, 30(4), 54(in Chinese).
陈硕平, 易和平, 罗志虹, 等. 材料导报:综述篇,2016, 30(4),54.
9 Jiang C, Zhao G F. Rock Mechanics and Rock Engineering, 2015, 48(3), 1041.
10 Jiang Q, Song L B. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1), 23(in Chinese).
江权, 宋磊博. 岩石力学与工程学报, 2018, 37(1), 23.
11 Tian W, Pei Z R, Han N. Rock and Soil Mechanics, 2017, 38(8), 2297(in Chinese).
田威, 裴志茹, 韩女. 岩土力学, 2017, 38(8), 2297.
12 Liu Q S, He F, Deng P H, et al. Rock and Soil Mechanics, 2019, 40(9), 3397(in Chinese).
刘泉声, 何璠, 邓鹏海, 等. 岩土力学, 2019, 40(9), 3397.
13 Zhou T, Zhu J B. Rock Mechanics and Rock Engineering, 2017, 51, 1.
14 Song Y M, Xing T Z, Zhao T B, et al. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(3), 534(in Chinese).
宋义敏, 邢同振, 赵同彬, 等. 岩石力学与工程学报, 2017, 36(3), 534.
15 Zhao C, Zhou Y M, Zhao C F, et al. Rock Mechanics and Rock Enginee-ring, 2018, 51, 3377.
16 Yue P, Zhong D H, Wu H, et al. Journal of Hydroelectric Engineering, 2016, 35(10), 93(in Chinese).
岳攀, 钟登华, 吴含, 等. 水力发电学报, 2016, 35(10), 93.
17 Deng S H, Wang X L, Yu J, et al. Rock Mechanics and Rock Enginee-ring, 2018, 51, 1801.
18 Zhu Z D, Lin H X, Sun Y L. Rock and Soil Mechanics, 2016, 37(4),913(in Chinese).
朱珍德, 林恒星, 孙亚霖. 岩土力学, 2016, 37(4), 913.
19 Blaber J, Adair B, Antoniou A. Experimental Mechanics, 2015, 55, 1105.
20 Zhang K, Liu X H, Li K, et al. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(12), 2785(in Chinese).
张科, 刘享华, 李昆, 等. 岩石力学与工程学报, 2018, 37(12), 2785.
21 Feng X T, Xiao Y X, Feng G L, et al. Chinese Journal of Rock Mechanics and Engineering, 2019,38(4), 649(in Chinese).
冯夏庭, 肖亚勋, 丰光亮, 等. 岩石力学与工程学报, 2019, 38(4), 649.
[1] 周港明, 杭美艳, 路兰, 王浩, 蒋明辉. 风积沙3D打印砂浆材料参数与各向异性研究[J]. 材料导报, 2022, 36(9): 21020081-5.
[2] 侯腾跃, 孙炎辉, 孙舒鹏, 肖瑛, 郑雁公, 王兢, 杜海英, 吴隽新. 机器学习在材料结构与性能预测中的应用综述[J]. 材料导报, 2022, 36(6): 20080205-12.
[3] 孙晓燕, 陈龙, 王海龙, 张静. 面向水下智能建造的3D打印混凝土配合比优化研究[J]. 材料导报, 2022, 36(4): 21050230-9.
[4] 崔天龙, 王里, 马国伟, 李之建, 白明科. HB-CSA与膨胀剂对3D打印混凝土收缩开裂性能的影响[J]. 材料导报, 2022, 36(2): 20120078-7.
[5] 秦若森, 孙守政, 韩振宇, 张鹏, 富宏亚. 3D打印连续纤维增强热塑性复合材料成型质量的研究进展[J]. 材料导报, 2022, 36(17): 21010246-9.
[6] 刘通, 诸葛祥群, 蓝嘉昕, 耿继业, 罗志虹, 李义兵, 罗鲲. 聚氨酯基压敏材料3D打印结合GaInSn液态金属导线制作柔性压力传感器的研究[J]. 材料导报, 2022, 36(15): 21030297-5.
[7] 王晓晶, 涂龙, 罗晓亮, 王浩旭, 胡振峰, 梁秀兵. 聚合物基材料4D打印研究进展[J]. 材料导报, 2022, 36(14): 20100265-15.
[8] 陈卫英, 陈真勇, 杨在君, 匙峰, 黎云祥. 胶原-乙酸混合溶液静电纺丝可纺性及电纺胶原膜力学特性评估[J]. 材料导报, 2021, 35(z2): 516-519.
[9] 王志勇, 蔡志祥, 刘国承, 孙智龙, 张铁. HAP-TCP复合生物陶瓷浆料的激光3D打印及性能研究[J]. 材料导报, 2021, 35(Z1): 104-107.
[10] 唐杰, 杨勇, 黄政仁. 碳化硅陶瓷浆料基3D打印研究进展[J]. 材料导报, 2021, 35(Z1): 172-179.
[11] 夏伟, 许金余, 聂良学, 王志航, 黄哲, 姚廒. 冲击荷载下纳米碳纤维混凝土的动态受压力学特性[J]. 材料导报, 2021, 35(22): 22063-22071.
[12] 耿继业, 蓝嘉昕, 刘通, 诸葛祥群, 罗志虹, 李义兵, 罗鲲. 3D打印聚氨酯微流道封装镓基液态金属柔性导线及其性能[J]. 材料导报, 2021, 35(20): 20040-20044.
[13] 杨兆哲, 孔振武, 吴国民, 王思群, 谢延军, 冯鑫浩. 3D打印聚合物纳米复合材料的研究进展[J]. 材料导报, 2021, 35(13): 13177-13185.
[14] 白刚, 王里, 王芳, 程新睿. 3D打印UHPC的制备和力学性能试验研究[J]. 材料导报, 2021, 35(12): 12063-12069.
[15] 汪海波, 徐成, 王梦想, 徐颖. 碳化龄期对水泥砂浆动态力学特性影响试验研究[J]. 材料导报, 2021, 35(12): 12087-12091.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed