Please wait a minute...
材料导报  2022, Vol. 36 Issue (14): 20100265-15    https://doi.org/10.11896/cldb.20100265
  高分子与聚合物基复合材料 |
聚合物基材料4D打印研究进展
王晓晶, 涂龙, 罗晓亮, 王浩旭, 胡振峰, 梁秀兵
军事科学院国防科技创新研究院前沿交叉技术研究中心,北京 100071
Recent Advances on 4D Printing of Polymer-based Materials
WANG Xiaojing, TU Long, LUO Xiaoliang, WANG Haoxu, HU Zhenfeng, LIANG Xiubing
Advanced Interdisciplinary Technology Research Center, National Innovation Institute of Defense Technology, Academy of Military Sciences, Beijing 100071, China
下载:  全 文 ( PDF ) ( 17183KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 4D打印是一种将3D打印和激励响应材料相结合的新兴制造技术。其核心特征是3D打印的构件在外界刺激下发生形状、性质、功能的可控变化。聚合物基材料是当前4D打印采用的主要材料,具有易成型、成本低、改性方便等优点。本文对聚合物基材料4D打印的研究进展进行了综述,首先按照驱动机制的属性对4D打印聚合物材料进行了分类总结,然后结合成型原理对聚合物材料4D打印方法进行了归纳, 并根据最新研究现状概述了4D打印聚合物材料在生物医疗、机器人、航空航天等领域的应用前景。最后讨论了聚合物基材料4D打印技术在可打印激励响应材料、3D打印设备和计算机辅助数学建模三个关键技术要素上所面临的挑战,并展望了其发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王晓晶
涂龙
罗晓亮
王浩旭
胡振峰
梁秀兵
关键词:  4D打印  3D打印  聚合物基材料  驱动机制  智能制造    
Abstract: 4Dprinting is an emerging manufacturing technology combining 3D printing and stimuli-responsive materials. The core feature of 4D printing is that the 3D-printed structures undergo predetermined transformation in shape, property and functionality under external stimuli. Polymer-based materials are the prevalent materials used in 4D printing due to simplicity in processing, low production cost and convenience in property modification. This paper reviews the state-of-the-art technologies on 4D printing of polymer-based materials. First, the polymer materials used for 4D printing are categorized and analyzed according to different driven mechanisms. Then, the printing methods using various polymers are summarized based on different printing principles. The applications of 4D printed polymers in diverse fields, such as bio-medical engineering, robotics and aerospace, are also discussed. Finally, the encountered challenges for 4D printing of polymer-based materials are analyzed from three key aspects, i.e., printable stimuli-responsive materials, 3D printers and computer-aided mathematical modeling. In addition, the future prospects of polymer-based 4D printing technologies are presented.
Key words:  4D printing    3D printing    polymer-based material    driven mechanism    smart manufacturing
发布日期:  2022-07-26
ZTFLH:  TH164  
  TP24  
  TP23  
基金资助: 国家重点研发计划(2018YFC1902400);国家自然科学基金(51975582)
通讯作者:  liangxb_d@163.com   
作者简介:  王晓晶,军事科学院国防科技创新研究院前沿交叉技术研究中心助理研究员。2009年本科毕业于国防科技大学,2019年获瑞典皇家理工学院博士学位。研究领域为微纳制造,目前已发表论文20余篇。
梁秀兵,军事科学院国防科技创新研究院前沿交叉技术研究中心主任,研究员、博导。从事极端环境防护新材料、增材制造的研究,承担了国家重点研发计划、国家863计划、国家自然科学基金等多项重点项目。荣获国家科技进步二等奖2项、国家自然科学二等奖1项;专利授权38项;出版著作4部;发表论文200余篇。荣获中国科协求是奖、中国青年科技奖,入选教育部新世纪优秀人才支持计划、国家百千万人才工程,被遴选为2019首都科技盛典十大科技人物,并被授予有突出贡献中青年专家称号,获国务院特殊津贴。
引用本文:    
王晓晶, 涂龙, 罗晓亮, 王浩旭, 胡振峰, 梁秀兵. 聚合物基材料4D打印研究进展[J]. 材料导报, 2022, 36(14): 20100265-15.
WANG Xiaojing, TU Long, LUO Xiaoliang, WANG Haoxu, HU Zhenfeng, LIANG Xiubing. Recent Advances on 4D Printing of Polymer-based Materials. Materials Reports, 2022, 36(14): 20100265-15.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100265  或          http://www.mater-rep.com/CN/Y2022/V36/I14/20100265
1 Tibbits S. In:TED Conference, America, 2013.
2 Tibbits S. Architectural Design, 2014, 84(1), 116.
3 Tibbits S, McKnelly C, Olguin C, et al. In: Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture. Los Angeles, 2014, pp. 539.
4 Ge Q, Qi H J, Dunn M L. Applied Physics Letters, 2013, 103(13), 131901.
5 Pei E. Assembly Automation, 2014, 34(4), 310.
6 Khoo Z X, Teoh J E M, Liu Y, et al. Virtual and Physical Prototyping, 2015, 10(3), 103.
7 Momeni F, Liu X, Ni J, et al. Materials and Design, 2017, 122, 42.
8 Kuang X, Chen K, Dunn C K, et al. ACS Applied Materials and Interfaces, 2018, 10(8), 7381.
9 Kuang X, Roach D J, Wu J, et al. Advanced Functional Materials, 2019, 29(2), 1805290.
10 Zarek M, Mansour N, Shapira S, et al. Macromolecular Rapid Communications, 2017, 38(2), 1600628.
11 Bodaghi M, Damanpack A R, Liao W H. Smart Materials and Structures, 2016, 25(10), 105034.
12 Bakarich S E, Gorkin R, in het Panhuis M, et al. Macromolecular Rapid Communications, 2015, 36(12), 1211.
13 Bodaghi M, Serjouei A, Zolfagharian A, et al. International Journal of Mechanical Sciences, 2020, 173, 105451.
14 Han D, Farino C, Yang C, et al. ACS Applied Materials and Interfaces, 2018, 10(21), 17512.
15 Zolfagharian A, Kaynak A, Kouzani A. Materials and Design, 2020, 188, 108411.
16 Koshima H. Mechanically responsive materials for soft robotics, Wiley-VCH Verlag GmbH & Co. KGaA, Germany, 2020.
17 Rastogi P, Kandasubramanian B. Chemical Engineering Journal, 2019, 366, 264.
18 Ding H, Zhang X, Liu Y, et al. International Journal of Advanced Manufacturing Technology, 2019, 105(11), 4633.
19 Ma S Q, Zhang Y P, Wang M, et al. Science China Technological Sciences, 2020, 63(4), 532.
20 Rayate A, Jain P K. Materials Today: Proceedings, 2018, 5(9), 20474.
21 Shin D G, Kim T H, Kim D E. International Journal of Precision Engineering and Manufacturing-Green Technology, 2017, 4(3), 349.
22 Ge Q, Sakhaei A H, Lee H, et al. Scientific Reports, 2016, 6, 31110.
23 Ge Q, Dunn C K, Qi H J, et al. Smart Materials and Structures, 2014, 23(9), 094007.
24 Zhang Q, Zhang K, Hu G. Scientific Reports, 2016, 6, 1.
25 Wu J, Yuan C, Ding Z, et al. Scientific Reports, 2016, 6, 22431.
26 Ding Z, Weeger O, Qi H J, et al. Materials and Design, 2018, 137, 256.
27 Zhang W, Zhang F, Lan X, et al. Composites Science and Technology, 2018, 160, 224.
28 Zhou L Y, Ye J H, Fu J Z, et al. ACS Applied Materials and Interfaces, 2020, 12(10), 12068.
29 Mao Y, Yu K, Isakov M S, et al. Scientific Reports, 2015, 5, 13616.
30 Kuang X, Wu J, Chen K, et al. Science Advances, 2019, 5(5), 1.
31 Raviv D, Zhao W, McKnelly C, et al. Scientific Reports, 2014, 4, 7422.
32 Sydney G A, Matsumoto E A, Nuzzo R G, et al. Nature Mate-rials, 2016, 15(4), 413.
33 Huang L, Jiang R, Wu J, et al. Advanced Materials, 2017, 29(7), 1605390.
34 Stoychev G, Turcaud S, Dunlop J W C, et al. Advanced Functional Materials, 2013, 23(18), 2295.
35 Correa D, Poppinga S, Mylo M D, et al. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 378, 20190445.
36 Yang H, Leow W R, Wang T, et al. Advanced Materials, 2017, 29(33), 1701627.
37 Zolfagharian A, Kouzani A Z, Nasri-Nasrabadi B, et al. KnE Enginee-ring, 2017, 2(2), 15.
38 van Oosten C L, Bastiaansen C W M, Broer D J. Nature Materials, 2009, 8(8), 677.
39 Nishiguchi A, Zhang H, Schweizerhof S, et al. ACS Applied Materials and Interfaces, 2020, 12(10), 12176.
40 Mu X, Sowan N, Tumbic J A, et al. Soft Matter, 2015, 11(13), 2673.
41 Suo Z. Acta Mechanica Solida Sinica, 2010, 23(6), 549.
42 Cai J. 4D printing dielectric elastomer actuator based soft robots. Ph. D. Thesis, University of Arkansas, USA, 2016.
43 Shian S, Bertoldi K, Clarke D R. Advanced Materials, 2015, 27(43), 6814.
44 Hajiesmaili E, Clarke D R. Nature Communications, 2019, 10(1), 10.
45 Carrico J D, Leang K K. In: Proceedings of SPIE 10163, Electroactive Polymer Actuators and Devices (EAPAD). Portland, 2017, pp. 101630I.
46 Yuan C, Roach D J, Dunn C K, et al. Soft Matter, 2017, 13(33), 5558.
47 Zeng C, Liu L, Bian W, et al. Composites Part B: Engineering, 2020, 194, 108034.
48 Yun S, Niu X, Yu Z, et al. Advanced Materials, 2012, 24(10), 1321.
49 Wei H, Zhang Q, Yao Y, et al. ACS Applied Materials and Interfaces, 2017, 9(1), 876.
50 Zhao W, Zhang F, Leng J, et al. Composites Science and Technology, 2019, 184, 107866.
51 Kim Y, Yuk H, Zhao R, et al. Nature, 2018, 558, 274.
52 Nadgorny M, Xiao Z, Chen C, et al. ACS Applied Materials and Interfaces, 2016, 8(42), 28946.
53 Orlov M, Tokarev I, Scholl A, et al. Macromolecules, 2007, 40(6), 2086.
54 Hu Y, Wang Z, Jin D, et al. Advanced Functional Materials, 2020, 30(4), 1907377.
55 Jamal M, Zarafshar A M, Gracias D H. Nature Communications, 2011, 2, 527.
56 Deng T, Yoon C, Jin Q, et al. Applied Physics Letters, 2015, 106(20), 203108.
57 Zhao Z, Wu J, Mu X, et al. Macromolecular Rapid Communications, 2017, 38(13), 1600625.
58 Wu J, Zhao Z, Kuang X, et al. Multifunctional Materials, 2018, 1(1), 015002.
59 Han D, Morde R S, Mariani S, et al. Advanced Functional Materials, 2020, 30(11), 1909197.
60 Kokkinis D, Schaffner M, Studart A R. Nature Communications, 2015, 6, 8643.
61 Mao Y, Ding Z, Yuan C, et al. Scientific Reports, 2016, 6, 24761.
62 Naficy S, Gately R, Gorkin R, et al. Macromolecular Materials and Engineering, 2017, 302, 1600212.
63 Liu J, Erol O, Pantula A, et al. ACS Applied Materials and Interfaces, 2019, 11(8), 8492.
64 Kuksenok O, Balazs A C. Materials Horizons, 2016, 3(1), 53.
65 Le Duigou A, Chabaud G, Scarpa F, et al. Advanced Functional Mate-rials, 2019, 29(40), 1903280.
66 Zhang B, Zhang W, Zhang Z, et al. ACS Applied Materials and Interfaces, 2019, 11(10), 10328.
67 Taylor D L, in het Panhuis M. Advanced Materials, 2016, 28(41), 9060.
68 Zhang B, Kowsari K, Serjouei A, et al. Nature Communications, 2018, 9(1), 1831.
69 Li A, Challapalli A, Li G. Scientific Reports, 2019, 9(1), 7621.
70 Gul J Z, Sajid M, Rehman M M, et al. Science and Technology of Advanced Materials, 2018, 19(1), 243.
71 Melly S K, Liu L, Liu Y, et al. Smart Materials and Structures, 2020, 29, 083001.
72 Wan X, Luo L, Liu Y, et al. Advanced Science, 2020, 7,2001000.
73 Tumbleston J R, Shirvanyants D. Science, 2015, 347(6228), 1349.
74 Janusziewicz R, Tumbleston J R, Quintanilla A L, et al. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(42), 11703.
75 Ren L, Li B, He Y, et al. ACS Applied Materials and Interfaces, 2020, 12(13), 15562.
76 Wang F, Yuan C, Wang D, et al. Smart Materials and Structures, 2020, 29(5), 055016.
77 Piedrahita-Bello M, Piedrahita-Bello M, Angulo-Cervera J E, et al. Journal of Materials Chemistry C, 2020, 8(18), 6001.
78 Wu H, Zhang X, Ma Z, et al. Advanced Science, 2020, 7(9), 1903208.
79 Javaid M, Haleem A. Clinical Epidemiology and Global Health, 2019, 7(3), 317.
80 Miao S, Castro N, Nowicki M, et al. Materials Today, 2017, 20(10), 577.
81 Miao S, Zhu W, Castro N J, et al. Scientific Reports, 2016, 6, 27226.
82 Lin C, Lv J, Li Y, et al. Advanced Functional Materials, 2019, 29(51), 1906569.
83 Shiblee M N I, Ahmed K, Kawakami M, et al. Advanced Materials Technologies, 2019, 4(8), 1900071.
84 De Marco C, Alcantara C C J, Kim S, et al. Advanced Materials Techno-logies, 2019, 4(9), 1900332.
85 Fu H, Nan K, Bai W, et al. Nature Materials, 2018, 17(3), 268.
86 Park J K, Nan K, Luan H, et al. Advanced Materials, 2019, 31(52), 1905715.
87 Zhang T, Liu G Q, Leong W H, et al. Nature Communications, 2018, 9(1), 3188.
88 Miao J T, Ge M, Peng S, et al. ACS Applied Materials and Interfaces, 2019, 11(43), 40642.
89 Dong L, Agarwal A K, Beebe D J, et al. Nature, 2006, 442(7102), 551.
90 Barrett R, Taylor R, Keller P, et al. In: 21st Annual AIAA/USU Conference on Small Satellites. Logan, 2007, pp. 1.
91 Mitchell A, Lafont U, Hołyńska M, et al. Additive Manufacturing, 2018, 24, 606.
92 Leng J S, Sun J, Liu Y J. Acta Aeronautica et Astronautica Sinica, 2014, 35(1), 29(in Chinese).
冷劲松, 孙健, 刘彦菊.航空学报, 2014, 35(1), 29.
93 Su Y D, Wang X M, Wu B, et al. Journal of Aeronautical Materials, 2018, 38(2), 59(in Chinese).
苏亚东, 王向明, 吴斌,等.航空材料学报, 2018, 38(2), 59.
94 Ntouanoglou K, Stavropoulos P, Mourtzis D. Procedia Manufacturing, 2018, 18, 120.
95 Liu Y, Du H, Liu L, et al. Smart Materials and Structures, 2014, 23(2), 023001.
96 Leng J, Xie F, Wu X, et al. Journal of Intelligent Material Systems and Structures, 2014, 25(10), 1256.
97 Sokolowski W M, Tan S C. Journal of Spacecraft and Rockets, 2007, 44(4), 750.
98 Herath M, Islam M, Epaarachchi J, et al. In: ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. Louisville, 2019, pp. 1.
99 Wang Q. National Defense Science & Technology, 2016, 37(4), 36(in Chinese).
王群.国防科技, 2016, 37(4), 36.
100 Ge R T, Jiang Q. Tactical Missile Technology,2016(6),14(in Chinese).
葛悦涛, 蒋琪.战术导弹技术, 2016(6), 14.
101 Shen B, Erol O, Fang L, et al. Multifunctional Materials, 2020, 3(1), 012001.
102 Wei H Q, Wan X, Liu Y J, et al. Scientia Sinica (Technologica), 2018, 48(1), 2(in Chinese).
魏洪秋, 万雪, 刘彦菊,等.中国科学: 技术科学, 2018, 48(1), 2.
103 Zhang Y M, Li J, Xia J J, et al. Materials Reports, 2021, 35(1), 01212(in Chinese).
张雨萌, 李洁, 夏进军, 等.材料导报, 2021, 35(1), 01212.
104 Del B J, Sánchez-Somolinos C. Advanced Optical Materials, 2019, 7(16), 1900598.
105 Hoa S V, Cai X. Composite Structures, 2020, 238, 111883.
[1] 周港明, 杭美艳, 路兰, 王浩, 蒋明辉. 风积沙3D打印砂浆材料参数与各向异性研究[J]. 材料导报, 2022, 36(9): 21020081-5.
[2] 孙晓燕, 陈龙, 王海龙, 张静. 面向水下智能建造的3D打印混凝土配合比优化研究[J]. 材料导报, 2022, 36(4): 21050230-9.
[3] 崔天龙, 王里, 马国伟, 李之建, 白明科. HB-CSA与膨胀剂对3D打印混凝土收缩开裂性能的影响[J]. 材料导报, 2022, 36(2): 20120078-7.
[4] 王志勇, 蔡志祥, 刘国承, 孙智龙, 张铁. HAP-TCP复合生物陶瓷浆料的激光3D打印及性能研究[J]. 材料导报, 2021, 35(Z1): 104-107.
[5] 唐杰, 杨勇, 黄政仁. 碳化硅陶瓷浆料基3D打印研究进展[J]. 材料导报, 2021, 35(Z1): 172-179.
[6] 冯茹, 许雅惠, 韩慧, 黄文峻, 王延斌, 李兴建. 4D打印形状记忆高分子的打印方法、驱动原理、变形模式和应用[J]. 材料导报, 2021, 35(5): 5147-5157.
[7] 耿继业, 蓝嘉昕, 刘通, 诸葛祥群, 罗志虹, 李义兵, 罗鲲. 3D打印聚氨酯微流道封装镓基液态金属柔性导线及其性能[J]. 材料导报, 2021, 35(20): 20040-20044.
[8] 杨兆哲, 孔振武, 吴国民, 王思群, 谢延军, 冯鑫浩. 3D打印聚合物纳米复合材料的研究进展[J]. 材料导报, 2021, 35(13): 13177-13185.
[9] 白刚, 王里, 王芳, 程新睿. 3D打印UHPC的制备和力学性能试验研究[J]. 材料导报, 2021, 35(12): 12063-12069.
[10] 张雨萌, 李洁, 夏进军, 张育新. 4D打印技术:工艺、材料及应用[J]. 材料导报, 2021, 35(1): 1212-1223.
[11] 赵颖, 刘维胜, 王欢, 顾菲, 车玉君, 杨华山. 石灰石粉对3D打印水泥基材料性能的影响[J]. 材料导报, 2020, 34(Z2): 217-220.
[12] 李宸庆, 侯雅青, 苏航, 潘涛, 张浩. 铁/镍元素粉末的选区激光熔化过程扩散动力学研究[J]. 材料导报, 2020, 34(Z1): 370-374.
[13] 仪登豪, 冯英豪, 张锦芳, 李晓峰, 刘斌, 梁敏洁, 白培康. 3D打印石墨烯增强复合材料研究进展[J]. 材料导报, 2020, 34(9): 9086-9094.
[14] 王行, 郭子傲, 仪登豪, 冯英豪, 张锦芳, 李晓峰, 刘斌, 白培康. 适于3D打印的金属及陶瓷粉末表面包覆研究进展[J]. 材料导报, 2020, 34(21): 21166-21171.
[15] 王海霞, 段光远, 朱吉萌, 王加稳, 乔春梅. 基于自由基聚合的3D打印材料变形情况表征[J]. 材料导报, 2019, 33(Z2): 573-576.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed