Please wait a minute...
材料导报  2022, Vol. 36 Issue (17): 20090294-8    https://doi.org/10.11896/cldb.20090294
  金属与金属基复合材料 |
合金元素在Al基牺牲阳极中的作用机理
彭晶晶1,2,3, 刘静1,2,3,*, 张弦1,2,3, 成林1,2,3, 吴开明1,2,3, 张涛4
1 武汉科技大学高性能钢铁材料及其应用省部共建协同创新中心,武汉 430081
2 武汉科技大学耐火材料与冶金省部共建重点实验室,武汉 430081
3 武汉科技大学冶金工业工程系统科学湖北省重点实验室,武汉 430081
4 东北大学沈阳材料科学国家研究中心东北大学联合研究分部,沈阳 110819
Activation Mechanisms of Alloy Elements on Aluminum-based Sacrificial Anodes
PENG Jingjing1,2,3, LIU Jing1,2,3,*, ZHANG Xian1,2,3, CHENG Lin1,2,3, WU Kaiming1,2,3, ZHANG Tao4
1 Collaborative Innovation Center for Advanced Steels, Wuhan University of Technology and Science, Wuhan 430081, China
2 The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Technology and Science, Wuhan 430081, China
3 Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Wuhan University of Technology and Science, Wuhan 430081, China
4 Shenyang National Laboratory of Materials Science, Northeastern University, Shenyang 110819, China
下载:  全 文 ( PDF ) ( 3146KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 电容量大、电流效率高的Al合金具有很大潜力发展成为理想的牺牲阳极。但是,Al金属表面极易生成致密钝化膜,严重影响Al基牺牲阳极的功效。Al合金中的一些合金元素具有破钝化的作用,能够促进Al基体的活性溶解,提高Al基牺牲阳极放电量,因此学者们对合金元素在Al基牺牲阳极中的活化机理开展了广泛而深入的研究。合金元素对Al基牺牲阳极的活化机理主要包括:(1)溶解-再沉积作用;(2)表面自由能吸附理论;(3)第二相优先溶解原理;(4)离子电阻降理论;(5)电位负移理论;(6)非常价态理论等。众多理论的核心思想均是通过机械分离破坏Al2O3钝化膜的完整性,亦或是产生阳离子空位造成氧化膜缺陷。常见的合金元素主要有Hg、In、Sn、Ga、Zn、Mg、Mn、Ti、Zr、Cd、Si、Fe、Bi 、Cu及稀土(RE)元素等。
合金元素在Al基牺牲阳极活化过程中的作用机理复杂,且存在协同活化作用,合金元素的活化机理尚不十分清晰。因此,本文在查阅大量文献的基础上,重点梳理了Al基牺牲阳极的活化机理,并归纳整理了各合金元素在Al基牺牲阳极中的作用。本文将有助于进一步全面深入理解合金元素的作用机理,从顶层设计的角度出发为设计性能更优异的新型Al基牺牲阳极材料提供了思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
彭晶晶
刘静
张弦
成林
吴开明
张涛
关键词:  Al合金  牺牲阳极  合金元素  作用机理    
Abstract: Aluminum alloys, with large capacity and high current efficiency, have great potential to serve as ideal sacrificial anodes. However, the compact passive film easily formed on the surface of aluminum has serious impact on the efficiency of aluminum-based sacrificial anodes. Alloy elements can achieve de-passivation, promote the active dissolution of aluminum matrix and increase the discharge quantity of aluminum-based sacrificial anodes. Thus, the activation mechanisms of alloy elements on aluminum-based sacrificial anodes have been extensively and in-depth investigated. The main activation mechanisms include: (i) the dissolution-redeposition effect; (ii) the adsorption theory of surface free energy; (iii) the mechanism of preferential dissolution of the second phases; (iv) the reduction of ion resistance theory; (v) the negative shifts of potential mechanism; (vi) the uncommon valency theory, et al. The activation mechanisms mentioned above are almost focused on the integrity destruction of oxide films via mechanical detachment or the defection formation of Al2O3 oxide film by producing cation vacancy. At present, the common activating elements include Hg, In, Sn, Ga, Zn, Mg, Mn, Ti, Zr, Cd, Si, Fe, Bi, Cu, rare earth (RE) elements, etc.
Activation mechanisms of alloy elements in the activation process of aluminum-based sacrificial anodes are very complicated. Besides, there are synergistic effects between these alloy elements in the activation process, and activation mechanisms have not been clarified in details, yet. Therefore, by consulting the previous researches, activation mechanisms and effects of alloy elements on the aluminum-based sacrificial anodes were sorted out. This paper is expected to be helpful to understand action mechanisms of alloy elements further and more comprehensively, and provides perspective for the design of aluminum-based sacrificial anodes with much more excellent performances.
Key words:  aluminum alloy    sacrificial anode    alloy element    activation mechanism
出版日期:  2022-09-10      发布日期:  2022-09-10
ZTFLH:  TB304  
基金资助: 国家自然科学基金(51601137;51601138)
通讯作者:  *liujing2015@wust.edu.cn   
作者简介:  彭晶晶,2019年6月毕业于武汉科技大学,获得理学学士学位。现为武汉科技大学协同创新中心硕士研究生,在吴开明教授团队指导下进行研究。目前主要研究领域为深海用高性能Al基牺牲阳极。
刘静,武汉科技大学副教授、硕士研究生导师。2015年6月博士毕业于哈尔滨工程大学材料学专业,师从张涛教授,主要研究方向为金属材料深海腐蚀与防护。2016年获得国家自然科学基金青年项目一项,以第一或通讯作者身份在国际主要腐蚀期刊发表论文10余篇,包括Corrosion Science、Journal of Electrochemical Society、Journal of Materials Science and Technology等。
引用本文:    
彭晶晶, 刘静, 张弦, 成林, 吴开明, 张涛. 合金元素在Al基牺牲阳极中的作用机理[J]. 材料导报, 2022, 36(17): 20090294-8.
PENG Jingjing, LIU Jing, ZHANG Xian, CHENG Lin, WU Kaiming, ZHANG Tao. Activation Mechanisms of Alloy Elements on Aluminum-based Sacrificial Anodes. Materials Reports, 2022, 36(17): 20090294-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090294  或          http://www.mater-rep.com/CN/Y2022/V36/I17/20090294
1 Lei B, Zhang H, Hu S N, et al. Total Corrosion Control, 2016, 30(12), 18 (in Chinese).
雷冰, 张华, 胡胜楠, 等.全面腐蚀控制, 2016, 30(12), 18.
2 Sun M X, Ma L, Zhang H B, et al. Equipment Environmental Enginee-ring, 2018, 15(3), 9 (in Chinese).
孙明先, 马力, 张海兵, 等.装备环境工程, 2018, 15(3), 9.
3 Kong X D, Zhu M W, Ding Z B, et al. Chinese Journal of Rare Metals, 2003, 27(3), 376 (in Chinese).
孔小东, 朱梅五, 丁振斌, 等.稀有金属, 2003, 27(3), 376.
4 Huang Z F, Guo J Z, Liu G Y, et al. Corrosion & Protection, 2016, 37(2), 160 (in Chinese).
黄振风, 郭建章, 刘广义, 等.腐蚀与防护, 2016, 37(2), 160.
5 Yang Z H, Liu B, Li X Y, et al. Materials China, 2014, 33(10), 618 (in Chinese).
杨朝晖, 刘斌, 李向阳, 等.中国材料进展, 2014, 33(10), 618.
6 Lu D A. Aluminium Fabrication, 2004, 159(6), 30 (in Chinese).
卢定安.铝加工, 2004, 159(6), 30.
7 Zhu W K. Study on application of aluminum alloy anodes with different precipitation phases in wastewater storage tanks. Master's Thesis, Xi'an Shiyou University, China, 2021(in Chinese)
朱王科. 不同析出相铝合金阳极在污水储罐中的应用研究. 硕士学术论文,西安石油大学,2021.
8 Zhang W Y. Yunnan Metallurgy, 2008, 37(6),45 (in Chinese).
张文毓.云南冶金, 2008, 37(6), 45.
9 Wang Y D, Qin T N, Zhao X Y, et al. Nonferrous Metals Engineering, 2016, 6(5), 23 (in Chinese).
王亚东, 秦铁男, 赵相玉, 等.有色金属工程, 2016, 6(5), 23.
10 Liang S Q, Zhang Y, Guan D K, et al. Transactions of Nonferrous Metals Society of China, 2010, 20(6), 942.
11 Graver B, Helvoort A T J V, Nisancioglu K. Corrosion Science, 2010, 52(11), 3774.
12 Liu H, Sun M X, Ma L, et al. Materials Reports, 2011, 25(S1), 438 (in Chinese).
刘辉, 孙明先, 马力, 等.材料导报, 2011, 25(S1), 438.
13 Hartt W H, Lemieux E J, Lucas K E. In: CORROSION 2001, Houston, 2001, pp. 1509.
14 Wu Y H. Journal of Chinese Society of Corrosion and Protection, 1989, 9(2), 113 (in Chinese).
吴益华.中国腐蚀与防护学报, 1989, 9(2), 113.
15 Carroll W M, Breslin C B. Corrosion Science, 1992, 33(7), 1161.
16 Gurrappa I. Corrosion Prevention & Control, 1993, 40(4), 11.
17 Ma Y Y. Study on electrochemical performance of sacrificial anode under seawater wet-dry cycling. Master's Thesis, Ocean University of China, China, 2006 (in Chinese).
马燕燕.牺牲阳极在海水干湿交替条件下的电化学性能研究.硕士学位论文,中国海洋大学, 2006.
18 Sun H J, Huo S Z. Journal of Chinese Society of Corrosion and Protection, 1987, 7(2), 115 (in Chinese).
孙鹤建, 火时中. 中国腐蚀与防护学报, 1987, 7(2), 115.
19 Keir D S, Pryor M J, Sperry P R. Journal of the Electrochemical Society, 1967, 114(8), 777.
20 Lin L F, Chao C Y, Macdonald D D. Journal of the Electrochemical Society, 1981, 128(6), 1194.
21 Venugopal A, Veluchamy P, Selvam P, et al. Corrosion, 1997, 53(10), 808.
22 Despic A R, Drazic D M, Purenovic M M, et al. Journal of Applied Electrochemistry, 1976, 6(6), 527.
23 Hu S N, Zhang T, Shao Y W, et al. In: The 6th China Corrosion Confe-rence. Yinchuan, 2011, pp. 1047 (in Chinese).
胡胜楠, 张涛, 邵亚薇, 等. 第六届全国腐蚀大会. 银川, 2011, pp. 1047.
24 Hu S N. Research on property of Al-Zn-In sacrificial anode under simulate deep sea water. Ph.D. Thesis, Harbin Engineering University, China, 2012 (in Chinese).
胡胜楠. 模拟深海环境下Al-Zn-In牺牲阳极性能研究. 博士学位论文, 哈尔滨工程大学, 2012.
25 Wan B H, Fei J Y, Wang S P, et al. Materials Reports A: Review papers, 2010, 24(10), 87 (in Chinese).
万冰华, 费敬银, 王少鹏,等.材料导报:综述篇, 2010, 24(10), 87.
26 Al-Saffar A H, Ashworth V, Grant W A, et al. Corrosion Science, 1978, 18(8), 687.
27 Bessone J B. Corrosion Science, 2006, 48(12), 4243.
28 Breslin C B, Friery L P, Carroll W M. Corrosion, 1993, 49(11), 895.
29 El Shayeb H A, Abd El Wahab F M, El Abedin S Z. Journal of Applied Electrochemistry, 1999, 29(5), 601.
30 Qian M, Huang Y C, W Y H. Journal of Chinese Society of Corrosion and Protection, 1990, 10(4), 69 (in Chinese).
钱鸣, 黄永昌, 吴益华.中国腐蚀与防护学报, 1990, 10(4), 69.
31 Ma J, Wen J. Journal of Alloys and Compounds, 2010, 496(1-2), 110.
32 Ma J, Wen J, Zhai W, et al. Materials Characterization, 2012, 65, 86.
33 Pourgharibshahi M, Lambert P. Materials and Corrosion, 2016, 67(8), 857.
34 Saidman S B, Bessone J B. Electrochimica Acta, 1997, 42(3), 413.
35 Saidman S B, Bessone J B. Journal of Applied Electrochemistry, 1997, 27(6), 731.
36 Munoz A G, Saidman S B, Bessone J B. Corrosion Science, 2002, 44(10), 2171.
37 Bessone J B, Flamini D O, Saidman S B. Corrosion Science, 2005, 47(1), 95.
38 Qi G T, Liao H X, Qu J E. Journal of Chinese Society of Corrosion and Protection, 2003, 23(6), 355 (in Chinese).
齐公台, 廖海星, 屈钧娥.中国腐蚀与防护学报, 2003, 23(6), 355.
39 Ju K J, Liu C R, Xue J Q, et al. Material & Heat Treatment, 2009, 38(2), 55 (in Chinese).
鞠克江,刘长瑞,薛娟琴, 等. 热加工工艺,2009,38(2), 55.
40 Xiong W, Qi G T, Guo X P, et al. Journal of Huazhong University of Science & Technology, 2012, 40(4), 100 (in Chinese).
熊伟, 齐公台, 郭兴蓬, 等.华中科技大学学报(自然科学版), 2012, 40(4), 100.
41 Meng X, Wang Y, Zhang L, et al. Journal of the Electrochemical Society, 2018, 165(7), A1492.
42 Li Z Y, Yi L, Liu Z H, et al. Electrochemistry, 2001, 7(3), 316 (in Chinese).
李振亚, 易玲, 刘稚蕙, 等.电化学, 2001, 7(3), 316.
43 Sharma A, Zhang C, Chang Y A, et al. Corrosion Science, 2011, 53(5), 1724.
44 Li W L. New type deep-water aluminum alloy sacrificial anode preparation and performance research. Ph.D. Thesis, Nanjing University of Science & Technology, China, 2012 (in Chinese).
李威力. 新型深海铝合金牺牲阳极研制及性能研究. 博士学位论文, 南京理工大学, 2012.
45 Breslin C B, Carroll W M. Corrosion Science, 1992, 33(11), 1735.
46 Tuck C D S, Hunter J A, Scamans G M. Journal of the Electrochemical Society, 1987, 134(12), 2970.
47 Flamini D O, Saidman S B, Bessone J B. Corrosion Science, 2006, 48(6), 1413.
48 Flamini D O, Saidman S B. Materials Chemistry and Physics, 2012, 136(1), 103.
49 El Shayeb H A, Abd El Wahab F M, El Abedin S Z. Corrosion Science, 2001, 43(4), 643.
50 Yi Y, Huo J, Wang W. Fuel Cells, 2017, 17(5), 723.
51 Jiao M W. Research on microstructure and electrochemical property of Al- Zn-In-Mg-Ti-based sacrificial anode material. Master's Thesis, Henan University of Science and Technology, China, 2008 (in Chinese).
焦孟旺. Al-Zn-In-Mg-Ti系牺牲阳极材料组织与电化学性能的研究. 硕士学位论文, 河南科技大学, 2008.
52 Barbucci A, Cerisola G, Bruzzone G, et al. Electrochimica Acta, 1997, 42(15), 2369.
53 Breslin C B, Friery L P. Corrosion Science, 1994, 36(2), 231.
54 Salinas D R, Bessone J B. Corrosion, 1991, 47(9), 665.
55 Cheng K, Chen Q, Gao C W, et al. Journal of Guangxi Academy of Sciences, 2017, 33(3), 195 (in Chinese).
程坤, 陈琴, 高朝文, 等.广西科学院学报, 2017, 33(3), 195.
56 Sun H, Liu L, Li Y, et al. Corrosion Science, 2013, 77, 77.
57 Saeri M R, Keyvani A. Journal of Materials Science & Technology, 2011, 27(9), 785.
58 Kulkarni A G, Gurrappa I. British Corrosion Journal, 1993, 28(1), 67.
59 Tokuda S, Muto I, Sugawara Y, et al. Corrosion Science, 2017, 129, 126.
60 Saeri M R, Keyvani A, Mohammad R. Journal of Materials Science & Technology, 2011, 27(9), 785.
61 Ma J L, Wen J B. Corrosion Science, 2009, 51(9), 2115.
62 Wen J B, He J G, Lu X W. Corrosion Science, 2011, 53(11), 3861.
63 Xia Z J, Zhang W F, Yang W X, et al. Materials and Corrosion, 2020, 71(4), 1.
64 Shibli S M A, Gireesh V S. Corrosion Science, 2005, 47(8), 2091.
65 Worasaen K, Mungsantisuk P. Key Engineering Materials, 2017, 728, 15.
66 Shayegh Boroujeny B, Ghashghaei M R, Akbari E. Journal of Alloys and Compounds, 2018, 731, 354.
67 Ferdian D, Pratesa Y, Togina I, et al. Procedia Engineering, 2017, 184, 418.
68 Liu H, Sun M X, Ma L, et al. Corrosion Science and Protection Technology, 2011, 23(6), 514 (in Chinese).
刘辉, 孙明先, 马力,等.腐蚀科学与防护技术, 2011, 23(6), 514.
69 Zhang F, Ornek C, Nilsson J O, et al. Corrosion Science, 2020, 164, 108319.
70 Ma J, Wen J, Li X, et al. Rare Metals, 2009, 2, 187.
71 Pratesa Y, Utama A A, Erianto A, et al. Materials Science and Enginee-ring, 2019, 547(1), 12056.
72 He J G, Wen J B, Li X D. Corrosion Science, 2011, 53(5), 1948.
73 Zhao T T. Effect of Zr, Si alloying elements on electrochemical perfo-rmance and dissolution behavior of series of Al-Zn-In alloy sacrificial anod. Master's Thesis, Huazhong University of Technology and Science, China, 2007(in Chinese).
赵婷婷. 锆、硅对Al-Zn-In 系阳极性能和溶解行为的影响. 华中科技大学, 2007.
74 Wang C R. Hot Working Technology, 2014, 43(18), 13 (in Chinese).
王春荣. 热加工工艺, 2014, 43(18), 13.
75 He J G, Wen J B, Li X D. Advanced Materials Research, 2011, 146, 288.
76 Wang S S. Research on effects of Fe, Si, Cu and In contents on the cha-racterization of aluminum alloy sacrificial anode. Ph.D. Thesis, Dalian Maritime University, China, 2017 (in Chinese).
王树森. Fe、Si、Cu和In含量对铝合金牺牲阳极性能影响研究, 博士学位论文, 大连海事大学, 2017.
77 Shang Y J. Hot Working Technology, 2017, 46(12), 68 (in Chinese).
尚用甲.热加工工艺, 2017,46(12), 68.
78 Keir D S, Pryor M J, Sperry P R. Journal of the Electrochemical Society, 1969, 116(3), 319.
79 Ma L J, Song Y H, Guo Z C, et al. Development and Application of Materials, 2004, 19(1), 32 (in Chinese).
马丽杰, 宋曰海, 郭忠诚, 等.材料开发与应用, 2004, 19(1), 32.
80 Fen Y, Li X G, Wang R C, et al. Journal of Rare Earths, 2015, 33(9), 1010.
81 Qi G T, Guo Z H, Qu J E. Journal of Chinese Society of Corrosion and Protection, 2001, 21(4), 220 (in Chinese).
齐公台, 郭稚弧, 屈钧娥.中国腐蚀与防护学报, 2001, 21(4), 220.
82 Qi G T, Xiong W, Zhu W T. Corrosion Engineering, Science and Technology, 2011, 46(4), 458.
83 Xiong W, Qi G T, Guo X P, et al. Corrosion Science, 2011, 53(4), 1298.
84 Bruzzone G, Barbucci A, Cerisola G. Journal of Alloys and Compounds, 1997, 247(1-2), 210.
85 Zhang X Y, Xu L H, Wang Y X, et al. Hot Working Technology, 1996 (3), 52 (in Chinese).
张信义, 徐力红, 王元玺, 等.热加工工艺, 1996 (3), 52.
86 Jafarpishe S, Dehghanian C, Emamy M. Materials Science Forum, 2007, 546, 761.
[1] 郭瑞琪, 王秀琦, 刘国怀, 李天瑞, 王昭东. Ti-44Al-5Nb-1Mo-(V,B)合金热变形过程中的相变、再结晶行为及组织调控[J]. 材料导报, 2022, 36(Z1): 22010111-6.
[2] 马良义, 台鹏飞, 王志光, 庞立龙, 申铁龙, 姚存峰, 李靖. FeCrAl合金的液态LBE/Pb腐蚀研究进展[J]. 材料导报, 2022, 36(7): 20100178-6.
[3] 惠冰, 李扬, 张炎棣, 杨心怡. 水性环氧乳化沥青固化-破乳速率调控效能及作用机理[J]. 材料导报, 2022, 36(16): 22050008-6.
[4] 郑伟豪, 何娟, 伍勇华, 宋学锋, 桑国臣. 活性MgO对碱矿渣水泥收缩性能的影响[J]. 材料导报, 2022, 36(10): 21040175-8.
[5] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[6] 赖旭平, 李天方, 刘瑞, 孙红亮. 元素Nb、Hf、Zr对γ-TiAl合金抗氧化性能的影响[J]. 材料导报, 2021, 35(Z1): 374-377.
[7] 曾小川, 李学军, 邓小云, 胡侨丹, 尤磊. SA508 Gr.4N钢的辐照脆化性能研究进展[J]. 材料导报, 2021, 35(Z1): 438-442.
[8] 张先满, 陈再雨, 罗洪峰. 合金元素对Fe/Al界面反应影响的研究进展[J]. 材料导报, 2021, 35(7): 7145-7154.
[9] 陈永庆, 闫英杰, 曹睿, 刘刚, 秦巍, 车洪艳, 王铁军. 原始粉末颗粒边界对FeCrAl合金冲击韧性的影响机理[J]. 材料导报, 2021, 35(6): 6131-6134.
[10] 明玥, 游国强, 姚繁锦, 曾升, 赵建华, 李卫荣. 金属镁的氧化及氧化机理研究进展[J]. 材料导报, 2021, 35(19): 19134-19141.
[11] 王麒, 冯瑞成, 樊礼赫, 邵自豪, 董建勇. 切削深度对单晶γ-TiAl合金亚表面缺陷及残余应力的影响[J]. 材料导报, 2021, 35(14): 14089-14095.
[12] 杨平, 毛育青, 李芊芃, 何良刚, 柯黎明. 合金元素对Cu/Sn-/Cu回流焊焊点界面微观结构及剪切性能的影响[J]. 材料导报, 2021, 35(14): 14156-14160.
[13] 郭乃胜, 俞春晖, 王淋, 金鑫, 温彦凯. PR.M/胶粉复合改性沥青流变及微观特性研究[J]. 材料导报, 2021, 35(10): 10080-10087.
[14] 郝文俊, 孙荣禄, 牛伟, 谭金花, 李小龙. 合金元素影响高熵合金涂层组织及力学性能综述[J]. 材料导报, 2020, 34(Z2): 330-333.
[15] 吴韬, 段佳伟, 陈小明, 俞立涛, 陈云祥, 石淑琴. 合金元素对激光熔覆高熵合金涂层影响的研究进展[J]. 材料导报, 2020, 34(Z1): 413-419.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed