Please wait a minute...
材料导报  2022, Vol. 36 Issue (16): 22050008-6    https://doi.org/10.11896/cldb.22050008
  低碳生态路面材料 |
水性环氧乳化沥青固化-破乳速率调控效能及作用机理
惠冰1,2,*, 李扬1, 张炎棣1, 杨心怡1
1 长安大学公路学院,西安 710064
2 民航机场智慧建造与维养重点实验室,西安 710064
Regulation Efficiency and Mechanism of Curing-Demulsification Rate of Waterborne Epoxy Emulsified Asphalt
HUI Bing1,2,*, LI Yang1, ZHANG Yandi1, YANG Xinyi1
1 School of Highway, Chang'an University, Xi'an 710064,China
2 Key Laboratory of Intelligent Construction and Maintenance of CAAC,Xi'an 710064, China
下载:  全 文 ( PDF ) ( 10042KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究水性环氧乳化沥青固化-破乳时间及固化产物粘结性能,采用拉拔试验和红外光谱试验,在10 ℃、25 ℃及40 ℃试验温度下,通过掺加促进剂调整水性环氧固化速率,分别测定水性环氧固化时间和乳化沥青完全破乳时间,研究温度、促进剂掺量、固化-破乳时间差对水性环氧乳化沥青粘结强度的影响,分析促进剂作用下水性环氧乳化沥青的红外吸收性质。结果表明,水性环氧树脂固化与乳化沥青破乳时间受温度影响显著,10 ℃、25 ℃和40 ℃水性环氧乳化沥青固化-破乳时间差分别为48 h、8 h及6 h,掺加促进剂可使时间差分别最大缩短42 h、10 h及8 h,实现水性环氧乳化沥青固化-破乳速率调控;各温度下水性环氧乳化沥青达到最大固化强度的固化-破乳时间差分别为36 h、2.5 h和2 h;将促进剂分别掺入水性环氧树脂和水性环氧乳化沥青中,均未产生新的红外特征峰,与未掺加促进剂的水性环氧树脂相比,相同养生时间下其固化程度更高,说明促进剂可有效加速环氧树脂固化反应。本研究可为水性环氧乳化沥青材料优化与施工控制提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
惠冰
李扬
张炎棣
杨心怡
关键词:  水性环氧乳化沥青  固化剂  促进剂  性能调控  作用机理    
Abstract: In order to study the curing-demulsification time of waterborne epoxy emulsified asphalt and the bonding performance of cured products, the curing rate of waterborne epoxy was adjusted by adding accelerators at the test temperature of 10 ℃, 25 ℃ and 40 ℃, and the curing time of waterborne epoxy and the complete demulsification time of the emulsified asphalt were measured by pullng test respectively to study the effects of temperature, accelerator dosage, curing-demulsification time difference on the bonding strength of waterborne epoxy emulsified asphalt. In addition, the infrared absorption properties of the waterborne epoxy emulsified asphalt with accelerator were also analyzed. The results show that the curing time of waterborne epoxy resin and the emulsified asphalt is significantly affected by temperature. The curing-demulsification time diffe-rence of the waterborne epoxy emulsified asphalt is 48 h, 8 h and 6 h at 10 ℃, 25 ℃ and 40 ℃, respectively, and the addition of accelerator can shorten the time difference by 42 h, 10 h and 8 h respectively, to realize the curing-demulsification rate control of the waterborne epoxy emulsified asphalt; the curing-demulsification time of waterborne epoxy emulsified asphalt is 36 h, 2.5 h and 2 h at each temperature. The curing-demulsification time difference of the waterborne epoxy emulsified asphalt at above temperatures to reach the maximum curing strength is 36 h, 2.5 h and 2 h respectively. No new infrared characteristic peak was produced when the accelerator was added into the waterborne epoxy resin and the waterborne epoxy emulsified asphalt. Compared with the waterborne epoxy resin without accelerator, its curing degree is higher after the same curing time, indicating that accelerator can effectively accelerate the epoxy resin curing reaction. The study provides a reference for material optimization and construction control of the waterborne epoxy emulsified asphalt.
Key words:  waterborne epoxy emulsified asphalt    curing agent    accelerator    performance regulation    action mechanism
出版日期:  2022-08-25      发布日期:  2022-08-29
ZTFLH:  U416.217  
基金资助: 国家重点研发计划项目(2021YFB2601000);国家自然科学基金(52178409);内蒙古自治区交通运输科技项目(NJ-2021-17);长安大学中央高校基本科研业务费专项资金项目(300102212210)
通讯作者:  *82628532@qq.com   
作者简介:  惠冰,长安大学公路学院副教授、博士研究生导师,2005年毕业于长安大学道路桥梁与渡河工程专业,获工学学士学位;2009年毕业于长安大学材料学专业,获工学硕士学位;2013年毕业于长安大学道路与铁道工程专业,获工学博士学位。现任民航机场智慧建造与维养重点实验室副主任。主要研究方向为路面/道面智能化检测技术、公路行车安全风险评估技术、路面功能性养护材料研发与施工技术等。发表学术论文30余篇,授权国家发明专利14项,参编标准、规范2部。
引用本文:    
惠冰, 李扬, 张炎棣, 杨心怡. 水性环氧乳化沥青固化-破乳速率调控效能及作用机理[J]. 材料导报, 2022, 36(16): 22050008-6.
HUI Bing, LI Yang, ZHANG Yandi, YANG Xinyi. Regulation Efficiency and Mechanism of Curing-Demulsification Rate of Waterborne Epoxy Emulsified Asphalt. Materials Reports, 2022, 36(16): 22050008-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050008  或          http://www.mater-rep.com/CN/Y2022/V36/I16/22050008
1 Zhang Z Q, Wang S Q, Lu G D. International Journal of Pavement Engineering, 2020, 21(13), 1606.
2 Liu M M, Han S, Pan J, et al. Materials Reports B:Research Papers, 2018, 32(10), 1716(in Chinese).
刘梦梅, 韩森, 潘俊, 等. 材料导报:研究篇, 2018, 32(10), 1716.
3 Gu Y, Tang B M, He L H, et al. Construction and Building Materials, 2019, 229, 116942.
4 Liu H H, Li X J. Journal of Chongqing Jiaotong University(Natural Science), 2020, 39(10), 67(in Chinese).
刘洪辉,李晓娟.重庆交通大学学报(自然科学版),2020,39(10),67.
5 Czaderski C, Martinelli E, Michels J, et al. Composites Part B: Engineering, 2012,43(2), 398.
6 Zhao C, Zhang G, Zhao L. Molecules, 2012, 17(7), 8587.
7 Esposito C C, Freuli F, Frigione M. Materials, 2014, 7(9), 6832.
8 Zhang Y X. Study on strength formation law of polymer concrete and prediction model of open traffic time. Master's Thesis, Beijing University of Civil Engineering and Architecture, China, 2021(in Chinese).
张业兴. 聚合物混凝土强度形成规律及开放交通时机预测模型研究.硕士学位论文,北京建筑大学,2021.
9 Alessi S, Caponetti E, Güven O, et al. Macromolecular Chemistry and Physics, 2015, 216(5), 538.
10 Chen T, Gu G F. Journal of Building Materials, 2001(4), 356(in Chinese).
陈铤, 顾国芳. 建筑材料学报, 2001(4), 356.
11 Lin X, Zhang X D, Zhou J. Coating Industry, 2007(5), 1(in Chinese).
林曦, 张旭东, 周杰. 涂料工业, 2007(5), 1.
12 Nie X M, An Y C, Wang Z Z, et al. Engineering Plastics Application, 2011, 39(8), 21(in Chinese).
聂锡铭, 安运成, 王兆增, 等. 工程塑料应用, 2011, 39(8), 21.
13 Cui D X. Thermosetting Resin, 2016, 31(4), 28(in Chinese).
崔东霞. 热固性树脂, 2016, 31(4), 28.
14 Guo L H, Zhang S J, Chen Z D, et al. New Chemical Materials, 2021, 49(3), 261(in Chinese).
郭留红, 张书建, 陈忠达,等. 化工新型材料, 2021, 49(3), 261.
15 Hou Y, Dong Y S, Fan Y L, et al. Highway, 2020, 65(9), 245(in Chinese).
侯芸, 董元帅, 樊云龙,等. 公路, 2020, 65(9), 245.
16 Zhang Q, Xu Y H, Wen Z G. Construction and Building Materials, 2017, 153, 774.
17 Hu C C, Zhao J Y, Leng Z, et al. Construction and Building Materials, 2019, 197, 220.
18 Liang M, Su L P, Qiu Z M, et al. Journal of China University of Petro-leum (Edition of Natural Sciences), 2021, 45(6), 175(in Chinese).
梁明, 苏林萍, 仇正梅, 等. 中国石油大学学报(自然科学版), 2021, 45(6), 175.
19 Yan B Y, Zhang Z, Song Y Q, et al. New Chemical Materials, 2021, 49(12), 176(in Chinese).
颜丙越, 张卓, 宋禹泉, 等. 化工新型材料, 2021, 49(12), 176.
20 Zhang J P, Zhu H B, Pei J Z, et al. Journal of Traffic and Transportation Engineering, 2015, 15(5), 1(in Chinese).
张久鹏, 朱红斌, 裴建中, 等. 交通运输工程学报, 2015, 15(5), 1.
21 Wang F Z, Liu Y P, Zhang Y H,et al. Construction and Building Mate-rials, 2012, 28, 117.
22 Hu S G, Zhang Y H, Wang F Z. Construction and Building Materials, 2012, 34, 570.
23 Zhang B H, Ye J D, Chen B, et al. China Plastics Industry, 2009, 37(9), 64(in Chinese).
张宝华, 叶俊丹, 陈斌, 等. 塑料工业, 2009, 37(9), 64.
24 Li R, Leng Z, Partl N M, et al. Materials and Structures,2021,54,8.
25 Song S H, Mu Z G. China Adhesives, 2008,17(6), 27(in Chinese).
宋世红, 穆中国. 中国胶粘剂, 2008, 17(6), 27.
[1] 钟玉健, 张晓超, 袁锐, 吴学敏, 陈林万. 非钙基土壤固化剂加固机理及其应用性能研究进展[J]. 材料导报, 2022, 36(14): 20110066-9.
[2] 郑伟豪, 何娟, 伍勇华, 宋学锋, 桑国臣. 活性MgO对碱矿渣水泥收缩性能的影响[J]. 材料导报, 2022, 36(10): 21040175-8.
[3] 艾兵, 包予佳, 张世超, 孙现凯, 孙浩然, 陶柳实, 王春朋. 氧化锌和氧化镁对磷酸盐胶黏剂吸潮性能的影响[J]. 材料导报, 2021, 35(z2): 72-74.
[4] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[5] 王景龙, 王旭, 李建东, 张延杰, 蒋代军, 刘德仁, 李迅. F1离子固化剂加固试验黄土的物理力学特性变化机理[J]. 材料导报, 2021, 35(8): 8070-8075.
[6] 鲁发章, 刘海韬, 黄文质. 8YSZ-Al2O3复合热障涂层研究进展[J]. 材料导报, 2021, 35(7): 7042-7047.
[7] 李建东, 王旭, 张延杰, 蒋代军, 刘德仁, 王景龙, Steven. F1离子固化剂加固试验黄土机理及强度特性研究[J]. 材料导报, 2021, 35(6): 6100-6106.
[8] 郭乃胜, 俞春晖, 王淋, 金鑫, 温彦凯. PR.M/胶粉复合改性沥青流变及微观特性研究[J]. 材料导报, 2021, 35(10): 10080-10087.
[9] 力乙鹏, 李婷. 土壤固化剂的固化机理与研究进展[J]. 材料导报, 2020, 34(Z2): 273-277.
[10] 范燕, 徐昕荣, 石志峰, 刘佳, 李冰, 徐蒙蒙. 生物医用金属材料表面改性的研究进展[J]. 材料导报, 2020, 34(Z2): 327-329.
[11] 肖华强, 陈禹伽, 陈维平, 何佳容, 赵思皓. 材料在铝液中熔蚀-磨损行为的研究进展[J]. 材料导报, 2020, 34(7): 7123-7129.
[12] 薛松柏, 刘思怡, 刘露, 钟素娟, 龙伟民. 固化剂对树脂基Sn-58Bi复合焊膏铺展性能的影响[J]. 材料导报, 2020, 34(22): 22172-22177.
[13] 李雪岩, 常云飞, 廖明义. 氮丙啶固化端羧基液体氟橡胶的性能研究[J]. 材料导报, 2020, 34(20): 20177-20181.
[14] 周立玉, 李秀兰, 王宣, 曾洪亮, 余杰. AZ31镁合金固态扩渗La2O3+Zn渗层组织演化过程研究[J]. 材料导报, 2020, 34(18): 18093-18097.
[15] 赵晓光, 欧阳静, 张毅, 杨华明. 矿物基摩擦材料的研究进展[J]. 材料导报, 2019, 33(11): 1860-1868.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed