Please wait a minute...
材料导报  2022, Vol. 36 Issue (14): 20110066-9    https://doi.org/10.11896/cldb.20110066
  无机非金属及其复合材料 |
非钙基土壤固化剂加固机理及其应用性能研究进展
钟玉健1,2, 张晓超1,2, 袁锐1,2, 吴学敏1, 陈林万1
1 成都理工大学地质灾害防治与地质环境保护国家重点实验室,成都 610059
2 成都理工大学国家环境保护水土污染协同控制与联合修复重点实验室,成都 610059
Research Progress in the Stabilization Mechanism of Non-calcium-based Soil Stabilizer and Its Application Performance
ZHONG Yujian1,2, ZHANG Xiaochao1,2, YUAN Rui1,2, WU Xuemin1, CHEN Linwan1
1 State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
2 State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059,China
下载:  全 文 ( PDF ) ( 4176KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 土地退化是危及人类生存与发展的重大问题,对土壤进行加固处理一直是国内外学者的研究热点。通过强夯、纤维加筋、土工格构等物理加固措施可以实现土体加固。然而,与物理加固相比,利用土壤固化剂对土壤进行化学加固具有强度高、成本低、污染小等优点,受到了众多研究者的关注。土壤固化剂可分为钙基固化剂和非钙基固化剂:传统的钙基固化剂(水泥、粉煤灰、石灰等)存在污染大、凝结时间长、破坏土壤功能等缺点,多用于道路、建筑等领域;而应用于荒漠化治理、边坡修复、水土保持等领域的土壤固化剂,除了要具有良好的固化性能以外,还需具备较好的生态性能,因此非钙基固化剂是这些应用领域的首要选择。
按照化学成分,非钙基固化剂可分为聚合物类固化剂、生物酶类固化剂和离子类固化剂。各类固化剂的固化机理不同:聚合物类固化剂主要通过凝胶吸附、包裹、填充作用对土壤进行加固;生物酶类固化剂主要通过酶催化土壤颗粒表面阳离子与土壤有机质的离子交换反应进行加固;而离子类固化剂则是通过加速离子交换反应速率,降低土壤颗粒亲水性,以实现土壤加固。非钙基固化剂的应用性能分为工程性能和生态性能两个方面:工程性能主要体现为改善土壤的力学性质、提高土壤的抗侵蚀能力和抗变形能力;而生态性能主要体现在提高土壤的保水能力和间接促进植物生长的能力。
本文总结了非钙基固化剂的研究进展,分类介绍了非钙基固化剂的固化机理,总结了非钙基固化剂的工程性能与生态性能的应用研究,并对非钙基固化剂未来的发展方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
钟玉健
张晓超
袁锐
吴学敏
陈林万
关键词:  非钙基土壤固化剂  加固机理  工程性能  生态性能    
Abstract: Land degradation is a major problem threatening human survival and development. Soil stabilization has been hotspots for scholars at home and abroad. Physical stabilization measures such as dynamic compaction, fiber stabilization and geotextile can reinforce the soil. However, compared with physical stabilization measures, the chemical stabilization of soil with soil stabilizer has the advantages of high strength, low cost and low pollution, which has attracted the attention of many researchers. Soil stabilizers are divided into calcium-based soil stabilizers and non-calcium-based soil stabilizers. Traditional calcium-based stabilizers (such as cement, fly ash, and lime) have the disadvantages of serious pollution, long curing time and damage to soil functions, which are mostly used in roads and construction fields. Non-calcium-based soil stabilizers are the best choice in the application fields of desertification control, slope restoration, soil and water conservation and others, required to not only have excellent solidification performance, but also have good ecological properties.
Non-calcium-based stabilizers can be divided into polymer stabilizers, biological enzyme stabilizers and ionic stabilizers, according to the chemical composition. The curing mechanisms of various stabilizers are different. The polymer stabilizers mainly strengthen the soil through gel adsorption, wrapping and filling. The biological enzyme stabilizers mainly reinforce the soil by enzyme-catalyzed ion exchange reaction between cations on the surface of soil particles and soil organic matter. The ionic stabilizers accelerate the ion exchange reaction rate and reduce the hydrophilicity of soil particles to achieve soil stabilization. The application performance of non-calcium-based stabilizers is divided into engineering performance and ecological performance. The engineering performance is reflected in improving the mechanical properties of soil and strengthening the anti-erosion ability and anti-deformation ability of soil, while the ecological performance is mainly manifested in improving soil water holding capacity and indirectly promoting plant growth.
In this paper, the research progress of non-calcium-based stabilizers is summarized. The curing mechanisms of non-calcium-based stabilizers are introduced. The engineering and ecological performance of non-calcium-based stabilizers is combed. In addition, the future development of non-calcium-based stabilizers is also prospected.
Key words:  non-calcium-based soil stabilizer    stabilization mechanism    engineering property    ecological property
发布日期:  2022-07-26
ZTFLH:  P642.16  
  TU44  
基金资助: 国家自然科学基金重大专项(41790445);国家重点研发项目(2018YFC1504702)
通讯作者:  31685032@qq.com   
作者简介:  钟玉健,2019年6月毕业于成都理工大学,获得工学学士学位。现为成都理工大学生态环境学院硕士研究生,在张晓超副教授的指导下进行研究。目前主要研究领域为边坡水土保持与生态环境修复。
张晓超,成都理工大学生态环境学院副教授、硕士研究生导师。2001年7月毕业于西北农林科技大学,获得工学学士学位;2015年6月毕业于成都理工大学地质资源与地质工程专业,获得博士学位。承担国家级、省部级及其他项目20余项,主要从事地质灾害防治与生态环境修复、水-土-植互馈作用机制及其孕灾机理方向的研究工作。近年来在国内外重要期刊发表学术论文20余篇。
引用本文:    
钟玉健, 张晓超, 袁锐, 吴学敏, 陈林万. 非钙基土壤固化剂加固机理及其应用性能研究进展[J]. 材料导报, 2022, 36(14): 20110066-9.
ZHONG Yujian, ZHANG Xiaochao, YUAN Rui, WU Xuemin, CHEN Linwan. Research Progress in the Stabilization Mechanism of Non-calcium-based Soil Stabilizer and Its Application Performance. Materials Reports, 2022, 36(14): 20110066-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20110066  或          http://www.mater-rep.com/CN/Y2022/V36/I14/20110066
1 Wei J H, Men Y, Zhu F, et al. Advances in Mechanical Engineering, 2018, 10(6), 1.
2 Song X G, Zhou Z D, Zhang C G, et al. Journal of Highway and Transportation Research and Development, 2015, 32(3), 51(in Chinese).
宋修广, 周志东, 张崇高, 等. 公路交通科技, 2015, 32(3), 51.
3 Al-mashhadani M M, Canpolat O, Aygörmez Y, et al. Construction and Building Materials, 2018, 167, 505.
4 Raouf M E A E. Journal of Engineering Sciences, 2019, 47(4), 451.
5 DeJong J T, Mortensen B M, Martinez B C, et al. Ecological Enginee-ring, 2010, 36(2), 197.
6 Lim A, Atmaja P C, Rustiani S. Journal of Rock Mechanics and Geotechnical Engineering, 2020, 12(1), 180.
7 Wang Y, Soga K, Dejong J T, et al. Géotechnique, 2019, 69(12), 1086.
8 Bu F, Liu J, Bai Y, et al. Polymers (Basel), 2019, 11(3), 506.
9 Behnood A. Transportation Geotechnics, 2018, 17, 14.
10 Jalal F E, Xu Y, Jamhiri B, et al. Advances in Materials Science and Engineering, 2020, 2020, 1.
11 Zhang G H, Niu J, Sun J W, et al. Chinese Journal of Soil Science, 2018, 50(1), 28(in Chinese).
张冠华, 牛俊, 孙金伟, 等. 土壤通报, 2018, 50(1), 28.
12 Pourakbar S, Huat B K. International Journal of Geotechnical Enginee-ring, 2016, 11(2), 206.
13 Scholen D E. In: Proceedings 6th International Conference on Low-Volume Roads. Minnesota, 1995, pp. 252.
14 Zahri A M, Zainorabidin A. In: IOP Conference Series: Materials Science and Engineering. Kuala Lumpur, 2019, pp. 527.
15 Li Y P, Li T. Materials Reports B: Research Papers, 2020, 34(2), 1273(in Chinese).
力乙鹏, 李婷. 材料导报:研究篇, 2020, 34(2), 1273.
16 Li H, Cheng D B, Wang J L, et al. Yangtze River, 2018, 49(7), 11(in Chinese).
李昊, 程冬兵, 王家乐, 等. 人民长江, 2018, 49(7), 11.
17 Song N J, Chen X Z, Zhao H Y. China Building Materials Science & Technology, 2009, 31(1), 55(in Chinese).
宋南京, 陈新中,赵洪义. 中国建材科技, 2009, 31(1), 55.
18 Chang I, Im J, Prasidhi A K, et al. Construction and Building Materials, 2015, 74, 65.
19 Yang Q W, Pei X J, Huang R Q. Journal of Mountain Science, 2019, 16(2), 470.
20 Arasan S, Bagherinia M, Akbulut R K, et al. Environmental and Engineering Geoscience, 2017, 23(1), 1.
21 Cai G, Zhang T, Liu S, et al. Marine Georesources & Geotechnology, 2014, 34(4), 331.
22 Liu Y, Chang M, Wang Q, et al. Engineering Geology, 2020, 269,1.
23 Liu Y, Zheng W, Wang Q, et al. Journal of Cleaner Production, 2020, 251,119504.
24 Latifi N, Horpibulsuk S, Meehan C L, et al. Journal of Materials in Civil Engineering, 2017, 29(2),1.
25 Chen C, Wu L, Perdjon M, et al. Construction and Building Materials, 2019, 197, 271.
26 Dehghan H, Tabarsa A, Latifi N, et al. Clean Technologies and Environmental Policy, 2018, 21(1), 155.
27 Ayeldeen M K,Negm A M,Sawwaf M A E.Arabian Journal of Geosciences, 2016, 9(5), 371.
28 Liu J, Zhang Y Q, Qin S G, et al. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(5),149(in Chinese).
刘军, 张宇清, 秦树高, 等. 农业工程学报, 2016, 32(5), 149.
29 Liu J, Shi B, Jiang H, et al. Engineering Geology, 2011, 117, 114.
30 Liu J, Bai Y, Song Z, et al. Polymers (Basel), 2018, 10(3),287.
31 Liu J, Feng Q, Wang Y, et al. International Journal of Polymer Science, 2018, 1,3503415.
32 Liu J, Qi X H, Zhang D, et al. Advances in Materials Science and Engineering, 2017, 1, 5240186.
33 Rezaeimalek S, Huang J, Bin-Shafique S. Construction and Building Materials, 2017, 146, 210.
34 Pu S Y, Hou Y Q, Ma J, et al. Environmental & Engineering Geoscience, 2019, 25(2), 103.
35 Golhashem M R, Uygar E. Construction and Building Materials, 2020, 255, 119352.
36 Golhashem M R, Uygar E. Environmental & Engineering Geoscience, 2019, 25(4), 289.
37 Jang J. Advances in Materials Science and Engineering,2020,1,1465709.
38 Chang I, Cho G C. Acta Geotechnica, 2018, 14(2), 361.
39 Chang I, Im J, Cho G C. Canadian Geotechnical Journal, 2016, 53(10), 1658.
40 Chang I, Lee M, Tran A T P, et al. Transportation Geotechnics, 2020, 24,100385.
41 Choi S G, Chang I, Lee M, et al. Construction and Building Materials, 2020, 246,118415.
42 Zhang T, Cai G, Liu S, et al. KSCE Journal of Civil Engineering, 2016, 20(7), 2725.
43 Zhang T, Yang Y L, Liu S Y. Science of Total Environment, 2020, 728, 138830.
44 Petri D F S. Journal of Applied Polymer Science, 2015, 132(23), 42035.
45 Al-Khanbashi A, Abdalla S W. Geotechnical and Geological Engineering, 2006, 24(6), 1603.
46 Ghasemzadeh H, Modiri F. Carbohydrate Polymers, 2020, 246, 116639.
47 Tingle J S, Newman J K, Larson S L, et al. Journal of the Transportation Research Board, 2007, 1989, 59.
48 Song Z, Liu J, Bai Y, et al. Applied Sciences, 2019, 9(1), 9010208.
49 Naeini S A, Naderinia B, Izadi E. KSCE Journal of Civil Engineering, 2012, 16(6), 943.
50 Huang H, Liu L. In: International Conference on Civil Engineering & Urban Planning. Yantai, China, 2012, pp.123.
51 Li W. Journal of Highway and Transportation Research and Development, 2016, 42(2), 81(in Chinese).
李威. 湖南交通科技, 2016, 42(2), 81.
52 Kushwaha S S, Kishan D, Dindorkar N. Materials Today: Proceedings, 2018, 5(9), 19667.
53 Li J, Wang W, Huang H. In: IOP Conference Series: Materials Science and Engineering. Xi'an, China, 2020, pp.740.
54 Chandler N, Palson J, Burns T. Canadian Geotechnical Journal, 2017, 54(10), 1509.
55 Ali F. Electronic Journal of Geotechnical Engineering, 2012, 17, 116.
56 Onyejekwe S, Ghataora G S. Bulletin of Engineering Geology and the Environment, 2014, 74(2), 651.
57 Zhang Z, Zhang H, Zhang J. Arabian Journal for Science and Enginee-ring, 2018, 43(10), 5657.
58 Yang Q, Luo X H, Qiu X, et al. Journal of Highway and Transportation Research and Development, 2015, 32(11), 33(in Chinese).
杨青, 罗小花, 邱欣, 等. 公路交通科技, 2015, 32(11), 33.
59 Zhang Y, Wang Z, Zheng Y. In: E3S Web of Conferences. Mianyang, China, 2020, pp.165.
60 Gautam S, Hoyos L R, He S, et al. Geotechnical and Geological Engineering, 2020, 38(5), 4981.
61 Zhang Z L, Zhang J M, Zhang H, et al. Journal of Glaciology and Geocryology, 2019, 41(1), 140(in Chinese).
张致龙, 张建明, 张虎, 等. 冰川冻土, 2019, 41(1), 140.
62 Luo X, Xu W, Qiu X, et al. Arabian Journal of Geosciences, 2020, 13(15), 729.
63 Rauch A F, Harmon J S, Katz L E, et al. Transportation Research Record, 2002, 1787, 33.
64 He S, Yu X, Banerjee A, et al. Transportation Research Record, 2018, 2672(52), 185.
65 Pooni J, Giustozzi F, Robert D, et al. Transportation Geotechnics, 2019, 21, 100255.
66 Chang I, Prasidhi A K, Im J, et al. Geoderma, 2015, 253, 39.
67 Krainiukov A, Liu J, Kravchenko E, et al. Cold Regions Science and Technology, 2020, 174, 103054.
68 Ma W, Gao W, Guo S, et al. Cold Regions Science and Technology, 2020, 177, 103065.
69 Jr E K, Iglesias E, Karatas I. In: International Conference on Soil Mechanics & Geotechnical Engineering. Alexandria, 2015, pp. 881.
70 Renjith R, Robert D J, Gunasekara C, et al. Journal of Materials in Civil Engineering, 2020, 32(5),04020091.
71 Latifi N, Rashid A S A, Siddiqua S, et al. Measurement, 2016, 91, 46.
72 Zandieh A R, Yasrobi S S. Geotechnical and Geological Engineering, 2010, 28(2), 139.
73 Wang Y M, Xu P F. The Chinese Journal of Geological Hazard and Control, 2018, 29(6), 92(in Chinese).
王银梅,徐鹏飞. 中国地质灾害与防治学报, 2018, 29(6), 92.
74 Zhu Y Y, Cao L X, Wu Z R, et al. Acta Pedologica Sinica, 2017, 54(1), 73(in Chinese).
祝亚云, 曹龙熹, 吴智仁, 等. 土壤学报, 2017, 54(1), 73.
75 Liu Q B, Xiang W, Cui D S. Chinese Journal of Geotechnical Enginee-ring, 2012, 34(10), 1887(in Chinese).
刘清秉, 项伟,崔德山. 岩土工程学报, 2012, 34(10), 1887.
76 Inyang H, Bae S, Mbamalu G, et al. Journal of Materials in Civil Engineering, 2007, 19(1), 84.
77 Mousavi F, Abdi E, Rahimi H. KSCE Journal of Civil Engineering, 2014, 18(7), 2064.
78 Deng W J. Journal of China & Foreign Highway, 2015, 35(2), 248(in Chinese).
邓伟军. 中外公路, 2015, 35(2), 248.
79 Zhang Z, Zhang H, Zhang J, et al. KSCE Journal of Civil Engineering, 2019, 23(7), 2867.
80 Liu Q B, Xiang W, Cui D S, et al. Chinese Journal of Geotechnical Engineering, 2011, 33(4), 648(in Chinese).
刘清秉, 项伟, 崔德山, 等. 岩土工程学报, 2011, 33(4), 648.
81 Liu Y M, Zhang X C. Chinese Journal of Soil Science, 2014, 45(1), 24(in Chinese).
刘月梅, 张兴昌. 土壤通报, 2014, 45(1), 24.
82 Liu Y M, Zhang X C. Journal of Northwest A & F University (Natural Science Edition), 2014, 42(1), 151(in Chinese).
刘月梅, 张兴昌. 西北农林科技大学学报(自然科学版), 2014, 42(1), 151.
83 Huang W, Liu Z, Zhou C, et al. Catena, 2020, 188, 104443.
84 Sharma K, Kaith B S, Kumar V, et al. Geoderma, 2014, 232, 45.
85 Liang Z S, Wu Z R. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(22), 171(in Chinese).
梁止水, 吴智仁. 农业工程学报, 2016, 32(22), 171.
[1] 魏冠奇, 王琰帅, 洪舒贤, 董必钦, 邢锋. 工程开挖土的资源化再利用研究进展[J]. 材料导报, 2022, 36(13): 20110138-9.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed