Please wait a minute...
材料导报  2022, Vol. 36 Issue (13): 20110138-9    https://doi.org/10.11896/cldb.20110138
  无机非金属及其复合材料 |
工程开挖土的资源化再利用研究进展
魏冠奇, 王琰帅, 洪舒贤, 董必钦*, 邢锋
深圳大学土木与交通工程学院,广东 深圳 518060
Research Progress of Resource Reutilization of Engineering Excavated Soil
WEI Guanqi, WANG Yanshuai, HONG Shuxian, DONG Biqin*, XING Feng
College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
下载:  全 文 ( PDF ) ( 4153KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,现代化城市建设逐步向下延伸,如地铁、隧道及地下多层建筑等,以扩大城市空间并实现土地资源的高效利用。然而,在这个建设过程中会产生大量工程开挖土(Excavated soil, ES)。目前,ES的处理问题已成为我国城市管理的一大难题。与此同时,我国正处于基础设施的大量建设时期,势必会消耗大量自然资源。将ES作为原料替代部分不可再生资源,对于解决ES的产生和堆积量大、缓解地球资源紧张、保证可持续健康发展有重要意义。
然而,ES的工程性较差,且其组成成分复杂多变,受地域因素的影响非常大,很难形成统一的生产规范。研究者们只能尽可能多地寻找合适的资源化再利用途径,同时尝试各种方法对ES进行处理,以提升其工程性。
ES资源化再利用途径主要包括作为细骨料用于混凝土中、作为火山灰材料用于胶凝基体中、用于制备可控性低强度材料(CLSM)和煅烧制备建材产品。根据研究结果,通过对ES进行筛分、稳定化或改性处理,能够成功降低其塑性、显著提高其工程性;经低温煅烧后,ES具备火山灰活性,但其活性的高低主要取决于所含粘土矿物的种类和含量;以ES为原料制备CLSM最为简单,在国外早已得到了成功应用;通过添加合适的辅助材料,不同类型的ES均已被证实能够用于制备烧结砖或陶粒,但产品的档次主要取决于所用ES的质量。
本文综述了近25年来有关ES资源化回收利用的研究。首先分析了ES的一般组成和特性,并指出了其工程性较差的原因;然后分类详述了目前主要存在的ES资源化再利用途径,同时总结了不同资源化再利用过程中所面临的问题和相应的解决办法;最后做出了综合性的评价并提出了一种合理的ES资源化再利用流程,以期为后续ES的研究提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
魏冠奇
王琰帅
洪舒贤
董必钦
邢锋
关键词:  工程开挖土  回收利用  工程性能  细骨料  煅烧  火山灰活性    
Abstract: In recent years, to expand urban space and realize the efficient utilization of land resources, modern urban construction has gradually extended downward, such as subway, tunnels and underground multi-storey buildings. However, a large amount of engineering excavation soil (ES) has been generated during these construction processes. Nowadays, the treatment of ES has become a major problem in urban management. Meanwhile, China is in such a period, during which a large number of infrastructures need to be constructed, which is bound to consume a lot of natural resources. Therefore, it is quite significant for solving the current problems of large ES production and accumulation, alleviating the shortage of earth resources and ensuring sustainable development to partly replace the non-renewable resources with ES.
However, the engineering performance of ES is poor. Moreover, it is hard to form a unified standard for ES utilization owing to its complex and highly locale-dependent composition. What a researcher can do is to find as many appropriate ways for ES reutilization as possible, while attempting various methods to deal with ES itself so as to improve its engineering performance.
The ways for ES reutilization mainly include utilization as fine aggregate or pozzolanic material in concrete and cementitious matrix, respectively, the preparation of controlled low strength materials (CLSM), and the preparation of building material products with calcined ES. According to the research results, the plasticity of ES can be successfully reduced, and its engineering performance can be significantly improved by the means of sieving, stabilizing or modifying; the ES calcined at low temperature, has been proved to obtain certain pozzolanic activity, while the activity mainly depends on the types and contents of clay minerals contained in ES itself; in comparison, the most convenient way for ES reutilization is to prepare CLSM, and the ES-CLSM has been successfully applied abroad; all kinds of ES have been verified to be able to be utilized to prepare sintered brick or ceramsite after blending with appropriate supplementary materials, as the grade of products mainly depends on the quality of ES used.
This paper gives a detailed review on ES reutilization in recent 25 years. Firstly, the general compositions and characteristics of ES are introduced, and the reasons for its poor engineering performance are pointed out. Then, the main existing ways for ES reutilization are classified and detailed. Meanwhile, the existing problems and corresponding solutions in these reutilization processes are summarized. Finally, a comprehensive evaluationis is made and a reasonable resource reutilization process is proposed to provide reference for the follow-up ES research.
Key words:  engineering excavated soil    reutilization    engineering performance    fine aggregate    calcination    pozzolanic activity
出版日期:  2022-07-10      发布日期:  2022-07-12
ZTFLH:  TU526  
基金资助: 国家自然科学基金(U1801254;51925805)
通讯作者:  * incise@szu.edu.cn   
作者简介:  魏冠奇,深圳大学土木与交通工程学院土木工程专业在读博士研究生,在董必钦教授的指导下进行研究。主要研究方向有固体废弃物资源化再利用、新型胶凝材料、自修复混凝土等。
董必钦,深圳大学教授、博士研究生导师,广东省滨海土木工程耐久性重点实验室副主任,2019年获得国家自然科学基金杰出青年基金。本科和硕士毕业于浙江大学材料科学与工程专业,随后在香港科技大学攻读博士学位。现已发表学术论文130余篇,获得授权专利26项。
引用本文:    
魏冠奇, 王琰帅, 洪舒贤, 董必钦, 邢锋. 工程开挖土的资源化再利用研究进展[J]. 材料导报, 2022, 36(13): 20110138-9.
WEI Guanqi, WANG Yanshuai, HONG Shuxian, DONG Biqin, XING Feng. Research Progress of Resource Reutilization of Engineering Excavated Soil. Materials Reports, 2022, 36(13): 20110138-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20110138  或          http://www.mater-rep.com/CN/Y2022/V36/I13/20110138
1 Cheng G H, Wang R, Zhao M H, et al. Earth Science Frontiers, 2019, 26(3), 39 (in Chinese).
程光华, 王睿, 赵牧华, 等. 地学前缘, 2019, 26(3), 39.
2 Zhang N, Duan H B, Sun P W, et al. Journal of Cleaner Production, 2020, 248, 119242.
3 Duan H, Wang J, Huang Q. Renewable Sustainable Energy Reviews, 2015, 43, 611.
4 Duan H, Miller T R, Liu G, et al. Waste Management, 2019, 83, 1.
5 Kataguiri K, Boscov M E G, Teixeira C E, et al. Journal of Cleaner Production, 2019, 240, 118215.
6 Magnusson S, Lundberg K, Svedberg B, et al. Journal of Cleaner Production, 2015, 93, 18.
7 Haas M, Galler R, Scibile L, et al. Resources Conservation & Recycling, 2020, 162, 105048.
8 Choi H, Park M H, Jeong D M, et al. Journal of Asian Architecture and Building Engineering, 2017, 16(2), 439.
9 ASTM D2487-17. Standard Practice for Classification of Soil for Enginee-ring Purposes ASTM International (Unified Soil Classification System), PA, USA, 2011.
10 Liu Z, Colin C, Huang W, et al. Geochemistry Geophysics Geosystems, 2013, 8, 1.
11 Zhu X M. Quaternary Sciences, 1993(1), 75 (in Chinese).
朱显谟.第四纪研究, 1993(1), 75.
12 Huang Q H, Cai Y L, Xing X S. Ambio, 2008, 37(5), 390.
13 Tironi A, Castellano C C, Bonavetti V L, et al. Construction and Buil-ding Materials, 2014, 64(30), 215.
14 Caldarone M A, Gruber K A, Burg R G. Modern Steel Construction, 1994, 16(11), 37.
15 Ding G Y, Xu J, Wei Y, et al. Resources, Conservation & Recycling, 2019, 150, 104428.
16 Wu J Y, Lee M Z. International Journal of Pavement Research & Techno-logy, 2011, 4(5), 293.
17 Chittoori B, Puppala A J, Raavi A. Journal of Materials in Civil Engineering, 2014, 26(6), 04014007.
18 Pan D. Study on hydration and properties of cement-based material with fine soil. Master's Thesis, Southeast University, China, 2019 (in Chinese).
潘东. 磨细渣土对水泥基材料水化及其性能的影响研究. 硕士学位论文, 东南大学, 2019.
19 Ng S, Plank J. Cement and Concrete Research, 2012, 42(6), 847.
20 Norvell K, Stewart G, Maria, et al. Journal of Materials in Civil Engineering, 2007, 19(12), 1053.
21 Fernades V A, Purnell P, Still G T. Cement and Concrete Research, 2007, 37(4), 751.
22 Yool A I G, Lees T P. Cement and Concrete Research, 1998, 28(10), 1417.
23 Krøyer H, Lindgreen H, Jakobsen H J, et al. Advances in Cement Research, 2003, 15(3), 103.
24 Fan Y F, Zhang S Y, Kawashima S H, et al. Cement & Concrete Compo-sites, 2014, 45, 117.
25 Heikal M, Abdel-Gawwad H A, Ababneh F A. Construction and Building Materials, 2018, 190, 508.
26 Morsy M S, Alsayed S H, Aqel M. Construction and Building Materials, 2011, 25(1), 145.
27 Heikal M, Ibrahim N M. Construction and Building Materials. 2016, 112, 19.
28 Gawwad H A A, Aleem S A E, Faried A S. Geosystem Engineering, 2017, 20(5), 276.
29 Chen J L. China Concrete, 2010(15), 44 (in Chinese).
陈家珑. 混凝土世界, 2010(15), 44.
30 Wang H L, Li C, Rong H, et al. Bulletin of the Chinese Ceramic Society, 2016(9), 3030 (in Chinese).
王海良, 李超, 荣辉, 等. 硅酸盐通报, 2016(9), 3030.
31 Liu C, Wang A H, Yu P, et al. Bulletin of the Chinese Ceramic Society, 2016(4), 1322 (in Chinese).
刘春, 王安辉, 余沛, 等. 硅酸盐通报, 2016(4), 1322.
32 Priyadharshini P, Ramamurthy K, Robinson R G. Applied Clay Science, 2017, 146, 81.
33 Wang Z, Wang L L, Wang Y, et al. Bulletin of the Chinese Ceramic Society, 2014(12), 3067 (in Chinese).
王智, 王林龙, 王应, 等. 硅酸盐通报, 2014(12), 3067.
34 Priyadharshini P, Ramamurthy K, Robinson R G. Construction and Building Materials, 2018, 192, 141.
35 Priyadharshini P, Ramamurthy K, Robinson R G. Journal of Cleaner Production, 2018, 176, 999.
36 Attom M F, Al-Sharif M M. Applied Clay Science, 1998, 13, 219.
37 Nidzam R M, Kinuthia J M. Construction Materials, 2010, 163(3), 157.
38 Obuzor G N, Kinuthia J M, Robinson R. Engineering Geology, 2012, 151, 112.
39 Kuo W Y, Huang J S, Lin C S. Cement and Concrete Research, 2006, 36, 886.
40 Wild S, Khatib J M, Jones A. Cement and Concrete Research, 1996, 26(10), 1537.
41 Hao T, Wang S, Li X, et al. Bulletin of the Chinese Ceramic Society, 2019, 38(4), 1019 (in Chinese).
郝彤, 王帅, 李鑫箫, 等. 硅酸盐通报, 2019, 38(4), 1019.
42 Ambroise J, Murat M, Pera J. Silicates Industries, 1986, 7(8), 99.
43 Sayanam R A, Kalsotra A K, Mehta S K, et al. Journal of Thermal Analysis and Calorimetry, 1989, 35(1), 99.
44 Yuan P. Degradation of calcined clay-limestone composites gelation system under sulfate attack and acid corrsion. Master's Thesis, Southeast University, China, 2019 (in Chinese).
袁鹏. 煅烧粘土-石灰石复合胶凝体系在硫酸盐与酸侵蚀作用下的劣化规律. 硕士学位论文, 东南大学, 2018.
45 Chakchouk A, Samet B, Mnif T. Applied Clay Science, 2006, 33(2), 79.
46 Finney A J, Shorey E F, Anderson J. In: International Pipelines Confe-rence 2008, Atlanta, Georgia, United States, 2008, pp. 2.
47 Liu M. Preparation and properties of controlled low-strength materials produced by construction waste. Master's Thesis, Beijing University of Civil Engineering and Architecture, China, 2016 (in Chinese).
刘萌. 建筑渣土制备可控低强材料及性能研究. 硕士学位论文, 北京建筑大学, 2016.PH
48 Nagaraija M C, Nalanda Y. Waste Management, 2008, 28, 1168.
49 Lee K H, Kim J D. KSCE Journal of Civil Engineering, 2013, 17(4), 674.
50 Sheen Y N, Zhang L H, Le D H. Construction and Building Materials, 2013, 48, 822.
51 Qian J S, Hu Y Y, Zhang J K, et al. Journal of Cleaner Production, 2019, 214, 79.
52 Chittoori B, Puppala A J, Pedaria A, et al. Ground Improvement and Geosynthetics, 2014, 238, 249.
53 Lu H X, Zhang L, Gao K, et al. New Building Materials, 2019(2), 133 (in Chinese).
卢红霞, 张灵, 高凯, 等. 新型建筑材料, 2019(2), 133.
54 Zhang L. Study on preparation and properties of new-type sintered bricks by construction wastes and industrial residues. Master's Thesis, Zhengzhou University, China, 2019 (in Chinese).
张灵. 利用建筑垃圾和工业废渣制备新型烧结砖及其性能研究. 硕士学位论文, 郑州大学, 2019.
55 Jiang J, Yi B D. Brick and Tile, 2019(3), 45 (in Chinese).
姜军, 尹宝党. 砖瓦, 2019(3), 45.
56 Deng X J, Yan H F, Liang J Q. Brick and Tile, 2016(3), 32 (in Chinese).
邓晓娟, 鄢海丰, 梁嘉琪. 砖瓦, 2016(3), 32.
57 Riley C M. Journal of the American Ceramic Society, 1951, 34(4), 121.
58 Zhang L, Zhang H Z, Rong H, et al. Journal of Building Materials, 2018, 21(5), 804 (in Chinese).
张磊, 张鸿飞, 荣辉, 等. 建筑材料学报, 2018, 21(5), 804.
59 Li H B, Xie F Z, Xuan H, et al. Applied Chemical Industry, 2015, 44(9), 1581 (in Chinese).
李海滨, 谢发之, 宣寒, 等. 应用化工, 2015, 44(9), 1581.
[1] 马帅, 金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用[J]. 材料导报, 2022, 36(Z1): 22030217-5.
[2] 刘猛, 王庆, 朱晨, 顿鹏, 刘勇. 水洗和粉磨预处理前后煅烧磷石膏的性能变化及应用[J]. 材料导报, 2022, 36(Z1): 22020111-5.
[3] 钟玉健, 张晓超, 袁锐, 吴学敏, 陈林万. 非钙基土壤固化剂加固机理及其应用性能研究进展[J]. 材料导报, 2022, 36(14): 20110066-9.
[4] 严金生, 周洲, 张庆年, 施韬, 周威杰, 胡卓君. 不同温度煅烧凹凸棒土的水化活性[J]. 材料导报, 2021, 35(z2): 248-253.
[5] 刘益良, 苏幼坡, 殷尧, 赵江山, 王硕, 莫宗云. 膨润土改性胶凝材料的研究进展[J]. 材料导报, 2021, 35(5): 5040-5052.
[6] 毛韦达, 赵林. 溶胶凝胶法合成La0.5Sr0.5Co0.8Mn0.2O3-δ钙钛矿及其催化性质[J]. 材料导报, 2021, 35(24): 24001-24005.
[7] 刘盼, 肖学英, 常成功, 阿旦春, 李颖, 董金美, 郑卫新, 黄青, 董飞, 刘秀泉, 文静. 基于正交试验和响应面法优化煅烧法提锂副产物制备氯氧镁水泥材料的工艺研究[J]. 材料导报, 2020, 34(Z2): 308-314.
[8] 王枭, 郭伟, 胡月阳, 陈芹, 仇佳琳, 李正阳, 陈佳彬, 管荣成. 硫硅酸钙的合成及水化性能的研究[J]. 材料导报, 2020, 34(Z1): 169-172.
[9] 姜宽, 戚承志, 崔英洁, 李太行, 卢真辉. 纤维素等若干因素对仿钢纤维增强透水混凝土性能的影响[J]. 材料导报, 2020, 34(Z1): 189-192.
[10] 汪知文, 李碧雄. 稻壳灰应用于水泥混凝土的研究进展[J]. 材料导报, 2020, 34(9): 9003-9011.
[11] 陈文华, 黄志义. 集料和纤维掺量对LTCC力学性能和微观结构的影响[J]. 材料导报, 2020, 34(18): 18049-18055.
[12] 汪心坤, 赵芳, 王建江. 煅烧温度对Zn0.96Co0.04O纳米纤维吸波性能的影响[J]. 材料导报, 2020, 34(14): 14034-14038.
[13] 李延安, 杨汝禄, 张华, 孙海滨, 司维蒙, 李蛟. 煅烧温度对铁酸铋纤维形貌及性能的影响[J]. 《材料导报》期刊社, 2018, 32(14): 2340-2344.
[14] 王爱国,刘朋,孙道胜,刘开伟,方立安,曹菊芳. 煅烧煤矸石粉体材料活性评价方法的研究进展[J]. 《材料导报》期刊社, 2018, 32(11): 1903-1909.
[15] 王爱国,吕邦成,段 平,武悦悦,刘开伟. 层状双氢氧化物改善地聚物抗氯离子渗透性能研究[J]. 《材料导报》期刊社, 2018, 32(10): 1707-1710.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed