Please wait a minute...
材料导报  2022, Vol. 36 Issue (10): 21040175-8    https://doi.org/10.11896/cldb.21040175
  无机非金属及其复合材料 |
活性MgO对碱矿渣水泥收缩性能的影响
郑伟豪1,2, 何娟1,*, 伍勇华1, 宋学锋1, 桑国臣3
1 西安建筑科技大学材料科学与工程学院,西安 710055
2 中建商品混凝土有限公司,武汉 430074
3 西安理工大学土木建筑工程学院,西安 710048
Effect of Reactive MgO on the Shrinkage Property of Alkali-activated Slag Cement
ZHENG Weihao1,2, HE Juan1,*, WU Yonghua1, SONG Xuefeng1, SANG Guochen3
1 College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2 China Construction Ready Mixed Concrete Co., Ltd., Wuhan 430074, China
3 School of Civil Engineering and Architecture, Xi'an University of Technology, Xi'an 710048, China
下载:  全 文 ( PDF ) ( 6694KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 研究了活性MgO对NaOH和水玻璃激发的碱矿渣水泥自收缩及干燥收缩的影响规律,通过水化热、XRD、TG/DTG及氮吸附等方法,分析了活性MgO的作用机理。结果表明:活性MgO的掺入不利于减小以NaOH为碱组分的碱矿渣水泥的自收缩及干燥收缩,而适量活性MgO能够明显减小以水玻璃为碱组分的碱矿渣水泥的自收缩及干燥收缩。活性MgO显著加速了以NaOH为碱组分的碱矿渣水泥水化,导致其自收缩增加;但当以水玻璃为碱组分时,其对水化作用的促进效果较差,自收缩减小。同时从水化产物的角度看,活性MgO促进了更多水化产物生成,尤其是水滑石的生成,并提高了C-(A)-S-H凝胶的结晶度,有助于抑制收缩;由于不同碱组分碱矿渣水泥水化特征不同,不同的水化产物生成量导致二者孔结构及介孔体积出现不同变化,使得自收缩及干燥收缩呈现出不同的变化规律。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑伟豪
何娟
伍勇华
宋学锋
桑国臣
关键词:  碱矿渣水泥  活性MgO  自收缩  干燥收缩  作用机理    
Abstract: The effect of reactive MgO on the autogenous and drying shrinkage of NaOH and water glass activated slag cement was studied. The action mechanism of reactive MgO was revealed by hydration heat, XRD, TG/DTG and nitrogen sorption technologies. The results show that the addition of reactive MgO is not conducive to reducing the autogenous and drying shrinkage of NaOH activated slag, while an appropriate amount of reactive MgO can significantly reduce the autogenous and drying shrinkage of water glass activated slag. Reactive MgO greatly accelerates the hydration of NaOH activated slag, resulting in the increase of autogenous shrinkage. For water glass activated slag, the effect of reactive MgO on promoting hydration is weak and the autogenous shrinkage decreases. More hydration products, especially hydrotalcite, are formed by the action of reactive MgO, and also the crystallinity of C-(A)-S-H gel is improved, which is beneficial to inhibiting shrinkage. Due to the different hydration process between NaOH and water glass activated slag, the incorporation of reactive MgO causes changes in the pore structure and mesoporous volume of the hardened paste, which affects the development of autogenous and drying shrinkage.
Key words:  alkali-activated slag (AAS) cement    reactive MgO    autogenous shrinkage    drying shrinkage    action mechanism
发布日期:  2022-05-24
ZTFLH:  TU528  
基金资助: 国家自然科学基金(52078420);陕西省自然科学基金(2021JM-353);中建科技研发计划(CSCEC-2021-Z-5)
通讯作者:  137170552@qq.com   
作者简介:  郑伟豪,2018年毕业于安徽建筑大学,获得工学学士学位。现为西安建筑科技大学硕士研究生。在何娟副教授指导下进行研究,主要研究方向为碱激发胶凝材料。
何娟,西安建筑科技大学副教授、硕士生导师。2011年12月于重庆大学获得材料科学与工程博士学位。主要从事环境友好生态材料、化学激发胶凝材料等相关方向的研究。主持参与课题10余项,在国内外知名学术刊物发表论文20余篇,参编教材2部,代表学术著作1部。
引用本文:    
郑伟豪, 何娟, 伍勇华, 宋学锋, 桑国臣. 活性MgO对碱矿渣水泥收缩性能的影响[J]. 材料导报, 2022, 36(10): 21040175-8.
ZHENG Weihao, HE Juan, WU Yonghua, SONG Xuefeng, SANG Guochen. Effect of Reactive MgO on the Shrinkage Property of Alkali-activated Slag Cement. Materials Reports, 2022, 36(10): 21040175-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21040175  或          http://www.mater-rep.com/CN/Y2022/V36/I10/21040175
1 Kong D Y, Zhang J Z, Ni T Y, et al. Journal of the Chinese Ceramic Society, 2009, 37(1), 151 (in Chinese).
孔德玉, 张俊芝, 倪彤元,等. 硅酸盐学报, 2009, 37(1), 151.
2 Yang C H, Liu B W, Xiang X B, et al. Journal of Building Materials, 2015, 18(1), 44 (in Chinese).
杨长辉, 刘本万, 向晓斌,等. 建筑材料学报, 2015, 18(1), 44.
3 Collins F, Sanjayan J G. Cement and Concrete Research, 2000, 30(9),1401.
4 Cartwright C, Rajabipour F, Radlińska A. Journal of Materials in Civil Engineering, 2015, 27(4), B4014007.
5 Fang Y H, Gu Y M, Kang Q B. Advanced Materials Research, 2010, 168-170, 2008.
6 Fang Y H, Liu J F, Chen Y Q. Water Science and Engineering, 2011, 4(4), 463.
7 Jin F, Gu K, Al-Tabbaa A. Construction and Building Materials, 2014, 51, 395.
8 Jin F, Al-Tabbaa A. Construction and Building Materials, 2015, 81, 58.
9 Shen W, Wang Y, Zhang T, et al. Journal of Wuhan University of Technology(Materials Science Edition), 2011, 26(1), 121.
10 Haha M B, Lothenbach B, Le Saout G, et al. Cement and Concrete Research, 2011, 41(9), 955.
11 Li Z, Liang X, Chen Y, et al. Construction and Building Materials, 2021, 278, 122397.
12 Liao Y S, Gui Y, Ke F L, et al. Journal of Building Materials, 2018, 21(3), 478 (in Chinese).
廖宜顺, 桂雨, 柯福隆,等. 建筑材料学报, 2018, 21(3), 478.
13 Li Z, Lu T, Liang X, et al. Cement and Concrete Research, 2020, 135, 106.
14 Melo-Neto A A, Cincotto M A, Repette W. Cement and Concrete Research, 2008, 38(4), 565.
15 Ye H, Radlińska A. Cement and Concrete Research, 2017, 101, 131.
16 Zhu X, Tang D, Yang K, et al. Construction and Building Materials, 2018, 175(JUN.30), 467.
17 Huang X, Long S Z. Cement, 2001(3), 5 (in Chinese).
黄新, 龙世宗.水泥, 2001(3), 5.
18 Shi C J, He F Q, Fernández-Jiménez A, et al. Journal of the Chinese Ceramic Society, 2012, 40(1), 69 (in Chinese).
史才军, 何富强, Fernández-Jiménez A,等. 硅酸盐学报, 2012, 40(1), 69.
19 Shi C, Day R L. Cement and Concrete Research, 1995, 25(6), 1333.
20 Shi C, Day R L. Cement and Concrete Research, 1996, 26(3), 439.
21 He J, Zheng W, Bai W, et al. Construction and Building Materials, 2021, 271, 121608.
22 Li Y, Bao J, Guo Y. Construction and Building Materials, 2010, 24(10), 1855.
23 Chen W, Brouwers H J H. Journal of Materials Science, 2007, 42(2), 428.
24 Gebregziabiher B S, Thomas R, Peethamparan S. Cement and Concrete Composites, 2015, 55, 91.
25 Haha M B, Le Saout G, Winnefeld F, et al. Cement and Concrete Research, 2011, 41(3), 301.
26 Su Y W, Zhang N, Lyu X J, et al. Materials Reports, 2020, 34(Z1), 271 (in Chinese).
苏岳威, 张宁, 吕宪俊,等. 材料导报, 2020, 34(Z1), 271.
27 Song S, Jennings H M. Cement and Concrete Research, 1999, 29(2), 159.
28 Frost R L, Martens W, Ding Z, et al. Journal of Thermal Analysis Calorimetry, 2003, 71(2), 429.
29 Ye H, Radlińska A. Cement Concrete Research, 2016, 88, 126.
30 Yu Y, Zhu H. Acta Materiae Compositae Sinica, 2017, 34(11), 2624 (in Chinese).
于泳, 朱涵.复合材料学报, 2017, 34(11), 2624.
31 IUPAC. Pure and Applied Chemistry, 1972, 31, 578.
32 Yuan B, Yu Q L, Dainese E, et al. Construction and Building Materials, 2017, 153, 459.
33 Li N, Zhang G F, Wang P M, et al. Journal of Building Materials, 2016, 19(4), 712 (in Chinese).
李楠, 张国防, 王培铭,等. 建筑材料学报, 2016, 19(4), 712.
34 Haha M B, Lothenbach B, Le Saout G, et al. Cement and Concrete Research, 2012, 42(1), 74.
35 Kim J K, Hilonga A, Quang D V, et al. Applied Surface Science, 2011, 258(2), 955.
36 Hwang C L, Vo D H, Tran V A, et al. Construction and Building Materials, 2018, 186, 503.
[1] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[2] 龚建清, 罗鸿魁, 张阳, 龚啸, 谢泽酃, 吴五星, 戴远帆. 减缩剂和HCSA膨胀剂对UHPC力学性能和收缩性能的影响[J]. 材料导报, 2021, 35(8): 8042-8048.
[3] 李爽, 刘和鑫, 杨永, 李青, 张之璐, 朱效宏, 杨长辉, 杨凯. 碱激发矿渣/偏高岭土复合胶凝材料干燥收缩机理研究[J]. 材料导报, 2021, 35(4): 4088-4091.
[4] 李青, 杨长辉, 陈平, 杨凯, 明阳, 赵艳荣. 利用硬脂酸钙改善孔结构以降低碱矿渣水泥石吸水速率[J]. 材料导报, 2021, 35(23): 23241-23245.
[5] 徐士林, 李绍纯, 耿永娟, 张友来, 陈旭, 许绍宸. 硅烷复合乳液对水泥砂浆干燥收缩性能及力学性能的影响[J]. 材料导报, 2021, 35(22): 22045-22050.
[6] 孙道胜, 李泽英, 刘开伟, 王爱国, 黄伟, 张高展. 再生粗骨料的形态及缺陷对再生混凝土干燥收缩和力学性能的影响[J]. 材料导报, 2021, 35(11): 11027-11033.
[7] 郭乃胜, 俞春晖, 王淋, 金鑫, 温彦凯. PR.M/胶粉复合改性沥青流变及微观特性研究[J]. 材料导报, 2021, 35(10): 10080-10087.
[8] 肖华强, 陈禹伽, 陈维平, 何佳容, 赵思皓. 材料在铝液中熔蚀-磨损行为的研究进展[J]. 材料导报, 2020, 34(7): 7123-7129.
[9] 徐彬彬, 欧忠文, 罗伟, 刘娜, 袁旺, 付来平. 饱水轻骨料和减缩剂对UHPC水化过程和自收缩的影响[J]. 材料导报, 2020, 34(22): 22065-22069.
[10] 周立玉, 李秀兰, 王宣, 曾洪亮, 余杰. AZ31镁合金固态扩渗La2O3+Zn渗层组织演化过程研究[J]. 材料导报, 2020, 34(18): 18093-18097.
[11] 李霖皓, 龙广成, 刘芳萍, 石晔, 马聪, 谢友均. 混凝土在蒸养过程中的变形性能[J]. 材料导报, 2019, 33(8): 1322-1327.
[12] 高瑞军, 姚燕, 吴浩, 王玲. 纳米复合粉体分散剂的制备及其分散性能[J]. 材料导报, 2018, 32(22): 3868-3874.
[13] 张洁, 张建建, 孙国文, 杨建明, 汤青青. 三种固废微粉对磷酸钾镁水泥浆体早期性能影响及作用机理[J]. 材料导报, 2018, 32(20): 3553-3561.
[14] 白光,田义,余林文,王磊. 聚乙烯醇纤维对碱矿渣泡沫混凝土性能的影响[J]. 《材料导报》期刊社, 2018, 32(12): 2096-2099.
[15] 吴林妹, 史才军, 张祖华, 王浩. 钢纤维对超高性能混凝土干燥收缩的影响*[J]. CLDB, 2017, 31(23): 58-65.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed