Please wait a minute...
材料导报  2021, Vol. 35 Issue (23): 23241-23245    https://doi.org/10.11896/cldb.20100086
  材料与可持续发展(四)——材料再制造与废弃物料资源化利用* |
利用硬脂酸钙改善孔结构以降低碱矿渣水泥石吸水速率
李青1,2, 杨长辉2, 陈平1, 杨凯2,3, 明阳1, 赵艳荣1
1 桂林理工大学土木与建筑工程学院广西建筑新能源与节能重点实验室,桂林 541004
2 重庆大学材料科学与工程学院,重庆 400045
3 利兹大学土木工程学院,利兹 LS2 9JT
Improving Pore Structure by Calcium Stearate to Reduce Water Sorptivity of Alkali-Activated Slag
LI Qing1,2, YANG Changhui2, CHEN Ping1, YANG Kai2,3, MING Yang1, ZHAO Yanrong1
1 Guangxi Key Laboratory of Engineering Structure and Building Energy Efficiency,College of Civil and Architectural Engineering, Guilin University of Technology, Guilin 541004, China
2 College of Materials Science and Engineering, Chongqing University, Chongqing 400045, China
3 School of Civil Engineering, University of Leeds, Leeds LS2 9JT, England
下载:  全 文 ( PDF ) ( 7586KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碱矿渣水泥石吸水速率通常高出普通硅酸盐水泥石3~5倍,对其耐久性有严重负面影响。传统方法(如填充密实和调整配合比等)难以有效降低碱矿渣水泥石吸水速率,本工作利用硬脂酸钙(CaSt)改善碱矿渣水泥石孔结构,同时在孔隙壁上引入硬脂酸钙憎水膜,以降低碱矿渣水泥石吸水速率。通过MIP、SEM等测试手段,研究了硬脂酸钙对碱矿渣水泥石孔隙率、孔径分布、孔隙曲折度和孔形貌的改善作用,以揭示CaSt对吸水速率的改善机理。结果表明:CaSt能够在无害孔范围(100 nm内)优化AAS孔径分布,减少水化产物缺陷,增大孔隙连曲折度,并在水化产物基体壁形成CaSt憎水膜,有效降低碱矿渣水泥石吸水速率约80%左右,且低于普通硅酸盐水泥。在碱矿渣水泥体系中硬脂酸钙的特点在于兼具疏水性和孔结构改性作用,同时对力学性能影响较小,具有优越的推广潜力和研究价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李青
杨长辉
陈平
杨凯
明阳
赵艳荣
关键词:  硬脂酸钙  碱矿渣水泥  吸水速率  孔结构    
Abstract: The water sorptivity of alkali-activated slag cement is usually 3—5 times higher than that of ordinary Portland cement, which has serious negative effect on its durability. It is difficult to effectively reduce the water sorptivity of alkali-activated slag cement by traditional methods (such as increasing the compactness and adjusting the mix proportion). In this work, calcium stearate (CaSt) was used to improve the pore structure of alkali-activated slag, and calcium stearate hydrophobic film was introduced into the pore wall to reduce the water sorptivity of AAS. The effect of CaSt on the pore structure and water sorptivity of AAS was studied by means of MIP and SEM. The results show that CaSt can improve microstructure of AAS, reduce the hydration product defects, reduce the pore connectivity, and be able to form CaSt film on the surface of the hydration products, and thus the water sorptivity of AAS was reduced by about 80%. Meanwhile, it should be highlighted that in the AAS system, calcium stearate is not only a hydrophobic component, but also a pore structure modifier, making it have a good promotion potential.
Key words:  calcium stearate    alkali activated slag    water sorptivity    pore structure
出版日期:  2021-12-10      发布日期:  2021-12-23
ZTFLH:  TU528  
基金资助: 国家重点研发计划(2019YFC1906202);广西创新驱动重大专项(2018AA23004);桂科能(19-J-22-3)
通讯作者:  yang.kai@cqu.edu.cn   
作者简介:  李青,桂林理工大学教师,2020年6月毕业于重庆大学材料科学与工程学院,获得建筑材料专业工学博士学位。在国内外SCI/EI学术期刊上发表论文10余篇,申请国家发明专利2项。参与国家自然科学基金青年项目、面上项目2项。研究工作主要围绕水泥基材料和碱激发材料进行,对建筑材料耐久性方面、工业/民用建筑固体废弃物处理、建筑节能材料等方面有较深入的认识。
杨凯,2001—2008年本硕毕业于重庆大学材料学院,2008—2012年获得英国女王大学土木学院工学博士学位,2013-至今,重庆大学材料科学与工程学院,建筑材料系任教。2015年,第二届建筑材料青年教师讲课比赛一等奖;2015年,UCL土木环境工程学院高级访问学者;2015年,英国女王大学土木工程学院访问学者;2014年,第三届全国大学生混凝土设计大赛,带队获得团队特等奖、优秀学生奖,本人获优秀指导教师。在国内外SCI/EI学术期刊上发表论文30余篇,申请国家发明专利4项。主持国家自然科学基金青年项目、面上项目2项,横向项目10余项。
引用本文:    
李青, 杨长辉, 陈平, 杨凯, 明阳, 赵艳荣. 利用硬脂酸钙改善孔结构以降低碱矿渣水泥石吸水速率[J]. 材料导报, 2021, 35(23): 23241-23245.
LI Qing, YANG Changhui, CHEN Ping, YANG Kai, MING Yang, ZHAO Yanrong. Improving Pore Structure by Calcium Stearate to Reduce Water Sorptivity of Alkali-Activated Slag. Materials Reports, 2021, 35(23): 23241-23245.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100086  或          http://www.mater-rep.com/CN/Y2021/V35/I23/23241
1 Pu X C, Gan C C. Concrete, 1991(5), 13 (in Chinese).
蒲心诚,甘昌成. 混凝土,1991(5),13.
2 Pu X C, Gan C C, Wu L X, et al. Building Energy Efficiency, 1988(1), 8 (in Chinese).
蒲心诚,甘昌成,吴礼贤,等.建筑节能,1988(1),8.
3 Pu X C, Gan C C. China Concrete and Cement Products, 1991(6), 4 (in Chinese).
蒲心诚,甘昌成.混凝土与水泥制品,1991(6),4.
4 Yang K, Yang C H, Magee B, et al. Cement and Concrete Composites, 2016 (73), 19.
5 Collins F G, Sanjayan J G. Journal of Materials in Civil Engineering, 2010, 22 (3), 260.
6 Law D, Adam A, Molyneaux T, et al. Materials and Structures, 2012, 45 (9), 1425.
7 Rostami M, Behfarnia K. Construction and Building Materials, 2017, 134, 262.
8 Ismail I, Bernal S A, Provis J L, et al. Construction and Building Mate-rials, 2013, 48, 1187.
9 Behfarnia K, Rostami M. Construction and Building Materials, 2017, 131, 205.
10 Jiang R, Zhang P, Zhao T J, et al. New Building Materials, 2010, 37 (9), 61 (in Chinese).
姜蓉,张鹏,赵铁军,等.新型建筑材料,2010,37(9),61.
11 Ge Z M. Concrete admixture (second edition), Chemical Industry Publishing House, China,2015 (in Chinese).
葛兆明. 混凝土外加剂(第二版),化学工业出版社,2015.
12 Maryoto A. Procedia Engineering, 2017, 171, 511.
13 Falchi L, Muller U, Fontana P, et al. Construction and Building Mate-rials, 2013, 49, 272.
14 Pu X C. Alkali-activated slag cement and concrete, Science Publishing House,China, 2010 (in Chinese).
蒲心诚. 碱矿渣水泥与混凝土, 科学出版社,2010.
15 Li Q, Yang Y, Yang K, et al. Cement and Concrete Composites, 2019, 103, 242.
16 Hewlett P, Chem C, Frsc F, et al. Lea's chemistry of cement and concrete, John Wiley and Sons, USA, 2003, pp. 471.
17 Law D W, Adam A A, Molyneaux T K. et al. Materials and Structures, 2012, 45(9), 1425.
18 Zeng Q, Li K F, Chong T, et al. Cement and Concrete Composites, 2012, 34(9), 1053.
19 Shi D, Winslow D N. Cement and Concrete Research, 1985, 15,135.
20 George P A, Constantinos E S. Chemical Engineering Communications, 2000, 81(1), 179.
21 Rajabipour F, Weiss J. Materials and Structures, 2007, 40(10), 1143.
22 Song S, Sohn D, Jennings H, et al. Journal of Materials Science, 2000, 35, 249.
[1] 李凯雯, 刘娟红, 张超, 段品佳, 张博超. 超低温及低温循环对混凝土材料性能的影响[J]. 材料导报, 2021, 35(z2): 183-187.
[2] 梁晓前, 黄榜彪, 黄秉章, 杨雷铭, 孙文贤, 林通敏, 任志强, 李有的, 刘灏. 基于孔结构的蒸压加气混凝土的冻融循环耐久性试验研究[J]. 材料导报, 2021, 35(z2): 200-204.
[3] 黄金花, 焦志伟, 陈先义, 赵小波, 姚英邦, 陶涛, 梁波, 鲁圣国. 黄豆的多孔结构及对亚甲基蓝染料的去除性能研究[J]. 材料导报, 2021, 35(z2): 520-524.
[4] 冯雨琛, 李地红, 卞立波, 李紫轩, 张亚晴. 芳纶纤维增强水泥基复合材料力学性能与冲击性能研究[J]. 材料导报, 2021, 35(z2): 634-637.
[5] 李紫轩, 李地红, 卞立波, 冯雨琛, 张亚晴, 于海洋. 短切芳纶纤维掺量对水泥基复合材料强度和孔结构的影响[J]. 材料导报, 2021, 35(z2): 638-641.
[6] 叶强. 工业固废制备透水砖及其孔结构研究进展[J]. 材料导报, 2021, 35(Z1): 274-278.
[7] 马驰, 王连慧, 潘崇祥, 刘紫婷, 王娜, 史颖. 泡孔聚合物压电材料的研究进展[J]. 材料导报, 2021, 35(7): 7199-7204.
[8] 刘志勇, 夏溪芝, 陈威威, 张云升, 刘诚. 水泥基材料微结构演变及其传输性能的数值模拟[J]. 材料导报, 2021, 35(3): 3076-3084.
[9] 唐琴, 周大利, 陈先勇. 清江河虾头胸甲基富氮/氧分级多孔叠炭片的制备及电化学性能[J]. 材料导报, 2021, 35(22): 22016-22021.
[10] 刘洁, 艾桃桃, 李文虎, 寇领江, 包维维, 董洪峰, 李梅. 通孔构型Ti6Al4V/Ti2AlC-TiAl基叠层复合板材的组织和性能[J]. 材料导报, 2021, 35(16): 16081-16085.
[11] 张高展, 葛竞成, 张春晓, 杨军, 刘开伟, 王爱国, 孙道胜. 养护制度对混凝土微结构形成机理的影响进展[J]. 材料导报, 2021, 35(15): 15125-15133.
[12] 于本田, 刘通, 王焕, 李盛, 谢超, 苏磊, 李彦林. 机制砂中片状颗粒对水泥胶砂性能的影响[J]. 材料导报, 2021, 35(14): 14058-14064.
[13] 董龙瑞, 杭美艳, 周港明, 贾春, 徐俊伟. 洗罐车泥浆对混凝土性能的影响[J]. 材料导报, 2020, 34(Z2): 242-245.
[14] 李卿, 赵国瑞, 马文有, 余红雅, 刘敏. 选区激光熔化成形多孔Ti6Al4V (ELI)合金的拉伸性能及断裂机制[J]. 材料导报, 2020, 34(4): 4073-4076.
[15] 杨海涛, 段品佳, 吴瑞东, 刘娟红, 娄百川, 罗坤. 借助激光闪光法研究高强混凝土的低温热学性能[J]. 材料导报, 2020, 34(16): 16043-16048.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed