Please wait a minute...
材料导报  2020, Vol. 34 Issue (16): 16043-16048    https://doi.org/10.11896/cldb.20020084
  无机非金属及其复合材料 |
借助激光闪光法研究高强混凝土的低温热学性能
杨海涛1,2,3, 段品佳4, 吴瑞东1,2,3, 刘娟红1,2,3, 娄百川1,2,3, 罗坤1,2,3
1 北京科技大学土木与资源工程学院, 北京 100083;
2 北京科技大学城市地下空间工程北京市重点实验室, 北京 100083;
3 北京科技大学金属矿山高效开采与安全教育部重点实验室, 北京 100083;
4 中海石油气电集团有限责任公司, 北京 100028
Thermal Properties of High-strength Concrete with Laser Flash Analysis at Cryogenic Temperatures
YANG Haitao1,2,3, DUAN Pinjia4, WU Ruidong1,2,3, LIU Juanhong1,2,3, LOU Baichuan1,2,3, LUO Kun1,2,3
1 College of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China;
2 Beijing Key Laboratory of Urban Underground Space Engineering, University of Science and Technology Beijing, Beijing 100083, China;
3 State Key Laboratory of High-efficient Mining and Safety of Metal Mines, Ministry of Education, University of Science and Technology Beijing, Beijing 100083, China;
4 China National Offshore Oil and Gas Group Co., Ltd., Beijing 100028, China
下载:  全 文 ( PDF ) ( 4593KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 低温环境中混凝土的热学性能是影响全混凝土LNG储罐安全高效运行的重要因素。本工作评价了一种新型耐低温高性能混凝土(CHC)的低温性能,并对其孔结构特征和低温环境中的热流变化、力学和热学性能进行了分析。结果表明:CHC基体中毛细孔和气孔的体积以及总孔隙率均低于C60混凝土。低温环境中,CHC基体的热流曲线在-36 ℃达到峰值;其热流曲线放热峰、比热容、热扩散系数和热导率均低于C60混凝土。当温度由25 ℃降至-90 ℃时,CHC基体和C60混凝土的峰值应力、弹性模量及热扩散系数增加;比热容和热导率降低。低温环境中,CHC的力学性能及其基体的热学性能均优于C60混凝土。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨海涛
段品佳
吴瑞东
刘娟红
娄百川
罗坤
关键词:  混凝土  低温  热流  孔结构  热学性能    
Abstract: The thermal properties are key factors affecting the safety and operating efficiency of all-concrete LNG storage tank. However, the thermal properties of concrete at cryogenic temperatures are still unclear. The performance of a new type of cryogenic temperature resistant high-performance concrete (CHC) was evaluated in this paper. The pore structure, heat flow behavior, mechanical and thermal properties of CHC at cryo-genic temperatures were investigated. The results showed that the volume of capillary pores and air pores and the total porosity of CHC matrix were less than that of C60 concrete. At cryogenic temperatures, the heat flow curve of CHC matrix reached its peak at -36 ℃. The height of heat flow peak, specific heat capacity, thermal diffusivity, and thermal conductivity of CHC matrix were less than that of C60 concrete. When the temperature decreased from 25 ℃ to -90 ℃, the peak stress value, elastic modulus, and thermal diffusion coefficient of CHC matrix and C60 concrete increased; while the specific heat capacity and thermal conductivity decreased. The mechanical properties of CHC and the thermal properties of CHC matrix are superior to C60 concrete at cryogenic temperature.
Key words:  concrete    cryogenic temperature    heat flow    pore structure    thermal property
               出版日期:  2020-08-25      发布日期:  2020-07-24
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51834001; 51678049)
通讯作者:  wrd0105@163.com; juanhong1966@hotmail.com   
作者简介:  杨海涛,2013年6月毕业于武汉理工大学,获得硕士学位。于2016年9月至今,在北京科技大学攻读博士学位,主要从事耐低温混凝土和高性能混凝土自愈合研究。
吴瑞东,2015年至今于北京科技大学攻读博士学位,主要研究方向为绿色高性能混凝土。
刘娟红,北京科技大学,教授。主要研究领域包括生态环保型高性能土木工程结构材料、新型混凝土材料及其环境行为与建筑物寿命分析和矿山充填用新型胶凝材料研究与应用。
引用本文:    
杨海涛, 段品佳, 吴瑞东, 刘娟红, 娄百川, 罗坤. 借助激光闪光法研究高强混凝土的低温热学性能[J]. 材料导报, 2020, 34(16): 16043-16048.
YANG Haitao, DUAN Pinjia, WU Ruidong, LIU Juanhong, LOU Baichuan, LUO Kun. Thermal Properties of High-strength Concrete with Laser Flash Analysis at Cryogenic Temperatures. Materials Reports, 2020, 34(16): 16043-16048.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20020084  或          http://www.mater-rep.com/CN/Y2020/V34/I16/16043
1 Kim S, Kim M, Yoon H, et al. Cryogenics, 2018, 93, 75.
2 Kogbara R B, Iyengar S R, Grasley Z C, et al. Construction and Buil-ding Materials, 2013, 47, 760.
3 Krstulovic-Opara N. ACI Materials Journal, 2007, 104(3), 297.
4 Jiang Z W, Deng Z L, Zhu X P, et al. Cryogenics, 2018, 94, 5.
5 Chatterji S. Cement and Concrete Research, 1999, 29(4), 627.
6 Xie J, Li X, Wu H. Construction and Building Materials, 2014, 72, 380.
7 Hanaor A, Sullivan P J E. Magazine of Concrete Research, 1983, 35(124), 142.
8 Asadi I, Shafigh P, Abu Hassan Z F B, et al. Journal of Building Engineering, 2018, 20, 81.
9 Zhang W, Min H, Gu X, et al. Construction and Building Materials, 2015, 98, 8.
10 Xu Y, Chung D D L. Cement and Concrete Research, 2000, 30(1), 59.
11 Xu Y, Chung D D L. Cement and Concrete Research, 2000, 30(8), 1305.
12 Liu K, Wang Z, Jin C, et al. Construction and Building Materials, 2015, 101, 932.
13 Belkharchouche D, Chaker A. International Journal of Hydrogen Energy, 2016, 41(17), 7119.
14 Sayadi A A, Tapia J V, Neitzert T R, et al. Construction and Building Materials, 2016, 112, 716.
15 Collet F, Pretot S. Construction and Building Materials, 2014, 65, 612.
16 Jin H, Yao X, Fan L, et al. International Journal of Heat and Mass Transfer, 2016, 92, 589.
17 Gandage A S, Rao V R V, Sivakumar M V N, et al. Procedia-Social and Behavioral Sciences, 2013, 104, 188.
18 Gaal P S, Thermitus M A, Stroe D E.Journal of Thermal Analysis and Calorimetry, 2004, 78, 185.
19 Pyo S, Tafesse M, Kim H, et al. Cement and Concrete Composites, 2017, 84, 175.
20 Zhengwu J, Cong Z, Zilong D, et al. Cryogenics, 2019, 100, 1.
21 Kim M, Yoo D, Kim S, et al. Cement and Concrete Research, 2018, 107, 30.
22 Sun Z, Scherer G W. Cement and Concrete Research, 2010, 40(5), 740.
23 Laaroussi N, Lauriat G, Garoum M, et al. Construction and Building Materials, 2014, 70, 351.
24 Ding X, Li C, Li Y, et al. Construction and Building Materials, 2018, 185, 30.
25 Sánchez I, Nóvoa X R, Vera G de, et al. Cement and Concrete Research, 2008,38(7),1015.
26 Liu J, Ou G, Qiu Q, et al. Construction and Building Materials, 2017,146,493.
27 Ke X, Zhou X, Wang X, et al. Construction and Building Materials, 2016,126,345.
28 Shin K, Kim S, Kim J, et al. Nuclear Engineering and Design, 2002, 212(1), 233.
29 Nguyen L H, Beaucour A L, Ortola S, et al. Construction and Building Materials, 2017, 151, 720.
30 Real S, Gomes M G, Moret Rodrigues A, et al. Construction and Buil-ding Materials, 2016, 121, 460.
31 Demirbogˇa R. Building and Environment, 2007, 42(7), 2467.
[1] 姜宽, 戚承志, 崔英洁, 李太行, 卢真辉. 纤维素等若干因素对仿钢纤维增强透水混凝土性能的影响[J]. 材料导报, 2020, 34(Z1): 189-192.
[2] 李义强, 李智, 赵斌, 刘磊, 蓝群力, 张新天, 卞立波. 多孔质混凝土植被恢复组合结构与材料性能研究[J]. 材料导报, 2020, 34(Z1): 199-202.
[3] 卢喆, 冯振刚, 姚冬冬, 纪鸿儒, 秦卫军, 于丽梅. 超高性能混凝土工作性与强度影响因素分析[J]. 材料导报, 2020, 34(Z1): 203-208.
[4] 储腾跃, 李矜, 赵学超, 董兵海, 李磊. 高流态高强混凝土收缩性能改善研究[J]. 材料导报, 2020, 34(Z1): 213-215.
[5] 张坤, 曹兴伟, 王静, 郑力, 王善强. 用于表面去污的丙烯酸均聚物低温成膜可剥离材料研究[J]. 材料导报, 2020, 34(Z1): 576-580.
[6] 纪宪坤, 汪源, 汪苏平, 胡志豪. 酯化改性抗泥型聚羧酸减水剂的制备及性能研究[J]. 材料导报, 2020, 34(Z1): 596-600.
[7] 汪知文, 李碧雄. 稻壳灰应用于水泥混凝土的研究进展[J]. 材料导报, 2020, 34(9): 9003-9011.
[8] 程正富, 周明军, 杨邦朝, 郑瑞伦. 石墨烯热学性能非简谐效应的研究进展[J]. 材料导报, 2020, 34(9): 9095-9100.
[9] 丛卓红, 陈恒达, 郑南翔, 周晚君. 水泥混凝土路面纹理的研究进展[J]. 材料导报, 2020, 34(9): 9110-9116.
[10] 李田雨, 刘小艳, 张玉梅, 熊传胜, 曹文凯, 李伟华. 海水海砂制备活性粉末混凝土的碳化机理[J]. 材料导报, 2020, 34(8): 8042-8050.
[11] 戈雪良, 陆采荣, 梅国兴. 降温速率对混凝土冻结应力的影响及机理研究[J]. 材料导报, 2020, 34(8): 8051-8057.
[12] 王家滨, 许云喆, 张凯峰, 王斌. 硝酸侵蚀/碳化交替作用下衬砌喷射混凝土的中性化研究及预测模型[J]. 材料导报, 2020, 34(8): 8058-8063.
[13] 杨海涛, 刘娟红, 纪洪广, 周昱程. 利用优化的水渗透试验研究SAPs的裂缝愈合机理[J]. 材料导报, 2020, 34(8): 8188-8193.
[14] 白亚飞, 王栋民. 公路混凝土用低坍落度塑性混凝土和无坍落度干硬性混凝土用引气剂的
国内外研究进展
[J]. 材料导报, 2020, 34(7): 7099-7106.
[15] 王婷玥, 邢书明, 敖晓辉, 王营. 压力对挤压铸造E级钢低温冲击韧性的影响[J]. 材料导报, 2020, 34(6): 6138-6143.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed