Please wait a minute...
材料导报  2021, Vol. 35 Issue (15): 15125-15133    https://doi.org/10.11896/cldb.20060297
  无机非金属及其复合材料 |
养护制度对混凝土微结构形成机理的影响进展
张高展1,2, 葛竞成1, 张春晓3, 杨军1,2, 刘开伟1,2, 王爱国1,2, 孙道胜1,2
1 安徽建筑大学材料与化学工程学院,合肥 230601
2 安徽省先进建筑材料重点实验室,合肥 230022
3 军事科学院国防工程研究院工程防护研究所,洛阳 471023
Review on the Microstructure Formation Mechanism in Concrete MaterialUnder Different Curing Regimes
ZHANG Gaozhan1,2, GE Jingcheng1, ZHANG Chunxiao3, YANG Jun1,2, LIU Kaiwei1,2, WANG Aiguo1,2, SUN Daosheng1,2
1 School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei 230601, China
2 Anhui Province Key Laboratory of Advanced Building Materials, Hefei 230022, China
3 Institute of Engineering Protection, IDE, AMS, PLA, Luoyang 471023, China
下载:  全 文 ( PDF ) ( 8905KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 养护制度是影响混凝土微结构形成的关键因素,进而决定了混凝土的性能。早在20世纪60年代,国内外学者就尝试通过控制养护温度或湿度来改善混凝土的性能,但由于控制变量的单一性,其对混凝土性能的提升效果有限。随着现代混凝土技术的发展,同时控制养护温度、湿度,甚至压力的蒸汽养护与蒸压养护应运而生。蒸汽养护和蒸压养护主要通过生成大量高密度C-S-H凝胶来为混凝土提供强度,且随着蒸压养护的持续,C-S-H凝胶向强度高、密度大的托勃莫来石转变,促进混凝土强度进一步增长。
然而,蒸汽养护与蒸压养护在快速提高混凝土强度的同时,也会使混凝土产生孔隙率增大、孔径粗化及界面过渡区性能变差等问题,从而影响混凝土的长期耐久性。为此,常采用降低水胶比、掺加矿物掺合料、延长养护时间、二次养护等措施,来改善蒸汽养护与蒸压养护混凝土的界面过渡区性能和孔隙结构,从而提升混凝土微结构的稳定性。
本文在综述标准养护、蒸汽养护和蒸压养护对混凝土水化产物的组成与形貌、界面过渡区和孔隙结构影响的基础上,归纳了不同养护制度下改善混凝土界面过渡区和孔隙结构的有效措施,分析了不同养护制度提升混凝土微结构稳定性的作用和机理,以期为混凝土养护制度的选择提供参考。最后,指出了不同养护制度下超高性能混凝土微结构形成与演变研究的不足。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张高展
葛竞成
张春晓
杨军
刘开伟
王爱国
孙道胜
关键词:  蒸汽养护  蒸压养护  水化产物  界面过渡区  孔结构    
Abstract: Curing regime is the key factor that affects the microstructure formation in concrete and further determines the performance of this material. As early as the 1960s, scholars at home and abroad started to improve the concrete performance through the variation of curing temperature and humidity. However, due to the singleness of this variable, its improvement on the concrete performance is limited. With the advent and deve-lopment of modern concrete technology, curing techniques such as steam and autoclaved curing emerges, which meet the requirement to simultaneously control the curing temperature, humidity and even pressure. Steam curing and autoclaving can promote the rapid growth of concrete strength, meeting the early strength requirement in engineering and reducing the construction period. At the micro-level, steam curing and autoclaving can accelerate the C-S-H gel formation in concrete, which contributes to its strength development at the macro-level. After longer time in autoclaved curing environment, C-S-H gel in concrete can transform to tobermorite crystals with high-strength and density, which further improves the mechanical strength of concrete.
However, during the fast strength growth for concrete in steam and autoclaved curing, it also undergoes the problem of large porosity, increa-sing number of micro-cracks and decreasing performance in the interface transition zone, which could affect the long-term durability of concrete. By the measures of decreasing water to binder ratio, adding mineral admixtures in cement-based material, prolongating curing time and exerting secondary curing, the performance of interfacial transition zone and pore structure in concrete can be improved, thereby improving the microstructural stability of concrete under steam or autoclaved curing.
This paper reviews the influence of curing regime (standard curing, steam curing and autoclaved curing) on the composition and morphology of hydration products, interfacial transition zone structure and the pore structure in concrete material. Based on the review, effective measures to improve the interfacial transition zone and pore structure of concrete have been concluded and the mechanisms for these measures to improve the microstructural stability of concrete under different curing regime have been analyzed, which can provide references for the selection of curing regime for concrete. Finally, the deficiency in the microstructure formation and evolution of ultra-high performance concrete (UHPC) under different curing regimes have been summarized.
Key words:  steam curing    autoclave curing    hydration products    interfacial transition zone    pore structure
               出版日期:  2021-08-10      发布日期:  2021-08-31
ZTFLH:  TU528  
基金资助: 国家自然科学基金面上项目(51878003);安徽省高校自然科学研究重大项目(KJ2019ZD55);安徽省高校优秀青年人才支持计划重点项目(gxyqZD2019055);安徽省重点研究与开发计划项目(202004b11020033)
作者简介:  张高展,安徽建筑大学副教授、硕士研究生导师,主要从事高性能水泥基材料和建筑功能材料的研究工作。2003年7月本科毕业于河南科技大学材料科学与工程学院,2007年7月和2017年1月在武汉理工大学材料科学与工程学院材料学专业分别取得硕士和博士学位。目前,主持国家自然科学基金项目2项,主持和参与安徽省高校自然科学研究重
大研究项目等省部级以上项目10余项。他在高性能水泥基材料领域发表论文40余篇,获授权国家发明专利6项;获安徽省科技进步二等奖、合肥市科技进步三等奖各1项。
张春晓,军事科学院国防工程研究院副研究员,主要从事工程防护材料研制及应用技术研究工作。2002年7月本科毕业于济南大学材料科学与工程学院,2010年在武汉理工大学材料科学与工程学院新型建筑材料专业取得硕士学位。近年来在工程防护材料领域发表论文30余篇,包括《振动与冲击》《爆炸与冲击》和《北京理工大学学报》等。
引用本文:    
张高展, 葛竞成, 张春晓, 杨军, 刘开伟, 王爱国, 孙道胜. 养护制度对混凝土微结构形成机理的影响进展[J]. 材料导报, 2021, 35(15): 15125-15133.
ZHANG Gaozhan, GE Jingcheng, ZHANG Chunxiao, YANG Jun, LIU Kaiwei, WANG Aiguo, SUN Daosheng. Review on the Microstructure Formation Mechanism in Concrete MaterialUnder Different Curing Regimes. Materials Reports, 2021, 35(15): 15125-15133.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060297  或          http://www.mater-rep.com/CN/Y2021/V35/I15/15125
1 Guo D E. Sichuan Building Science,1978(3),72(in Chinese).
郭黛娥.四川建筑科学研究,1978(3),72.
2 Huang J, Wu J, Zhao L. Bulletin of the Chinese Ceramic Society,2019,38(8),2680(in Chinese).
黄杰,吴瑾,赵林.硅酸盐通报,2019,38(8),2680.
3 Taylor H F W. Cement chemistry, Thomas Telford Ltd, UK,1997.
4 Krstulović R, Dabić P. Cement and Concrete Research,2000,30(5),693.
5 Yan P Y, Cui Q. Journal of the Chinese Ceramic Society,2015,43(2),133(in Chinese).
阎培渝,崔强.硅酸盐学报,2015,43(2),133.
6 Yuan P. Influence of temperature and humidity change on microstructure formation of cement paste and its improvement mechanism. Master’s Thesis, Wuhan University of Technology, China,2016(in Chinese).
袁盼.温湿度变化对水泥石微结构形成过程的影响及改善机制.硕士学位论文,武汉理工大学,2016.
7 Barbara L, Frank W, Corinne A, et al. Cement and Concrete Research,2006,37(4),483.
8 Patel H H, Bland C H, Poole A B. Cement and Concrete Research,1995,25(3),485.
9 Yazici H, Yigiter H, Aydin S, et al. Cement and Concrete Research,2005,36(3),481.
10 Zang W, Wang P, Wang X P, et al. Bulletin of the Chinese Ceramic Society,2020,39(3),685(in Chinese).
张伟,王攀,王鑫鹏,等.硅酸盐通报,2020,39(3),685.
11 Richardson I G. Cement and Concrete Research,2004,34(9),1773.
12 Wang M, Long G C, Shi Y, et al. Journal of Chinese Electron Microscopy Society,2015,34(6),4761(in Chinese).
王猛,龙广成,石晔,等.电子显微学报,2015,34(6),4761.
13 Shen P, Lu L N, He Y J, et al. Cement and Concrete Research,2019,118,1.
14 Vandamme M, Ulm F J, Fonollosa P. Cement and Concrete Research,2010,40(1),14.
15 Zanni H, Cheyrezy M, Maret V, et al. Cement and Concrete Research,1996,26(1),93.
16 He Y J, MAO R T, Lü L N, et al. Journal of Wuhan University of Technology (Materials Science),2017,32(3),598.
17 Liu X Q. Effect of Curing Regimes and Sulphate attack on the properties and microstructure of ultra high performance concrete. Master’s Thesis, Wuhan University of Technology, China,2016(in Chinese).
刘小清.养护制度和硫酸盐侵蚀对超高性能混凝土性能与微结构的影响.硕士学位论文,武汉理工大学,2016.
18 Houston J, Maxwell R, Carroll S. Geochemical Transactions,2009,10(1),1.
19 Yang Q, Zhang S, Huang S, et al. Cement and Concrete Research,2000,30(12),1993.
20 Alhozaimy A, Jaafar M S, Al-Negheimish A, et al. Construction and Building Materials,2011,27(1),218.
21 Jupe A C, Wilkinson A P, Luke K, et al. Cement and Concrete Research,2008,38(5),660.
22 Yazici H. Building and Environment,2007,42(5),2083.
23 Alawad O A, Alhozaimy A, Jaafar M S, et al. International Journal of Concrete Structures and Materials,2015,9(3),381.
24 Matsui K, Kikuma J, Tsunashima M, et al. Cement and Concrete Research,2011,41(5),510.
25 Bresson B, Meducin F, Zanni H, et al. Journal of Materials Science,2002,37(24),5355.
26 Eilers L H, Nelson E B, Moran L K. Journal of Petroleum Technology,1983,35(7),1373.
27 Kolakowski K, De Preter W, Van Gemert D, et al. Cement and Concrete Research,1994,24(4),765.
28 Kim J, Foley E M, Mahmoud M. et al. Cement and Concrete Composites,2012,36(1),65.
29 Lehmann C, Fontana P, Müller U. In: 3rd International Symposium on Nanotechnology in Construction. Prague, Czech Republic,2009,pp. 287.
30 Okada Y, Ishida H, Mitsuda T. Journal of the American Ceramic Society,1994,77,765.
31 Cong X, Kirkpatrick R J. Advanced Cement Based Materials,1996,3(3),144.
32 Zhang H R, Ji T, He B J, et al. Construction and Building Materials,2019,213,469.
33 Halit Y, Mert Y Y, Serdar A, et al. Construction and Building Materials,2008,23(3),1223.
34 Halit Y, Engin D, Bülent B. Construction and Building Materials,2013,42,53.
35 Liu R G, Ding S D, Yan P Y. Journal of the Chinese Ceramic Society,2015,43(5),610.
36 Yan P Y, Li M Y, Zhou Y Q. Journal of the Chinese Ceramic Society,2019,38(1),82(in Chinese).
阎培渝,黎梦圆,周予启.电子显微学报,2019,38(1),82.
37 Yan P Y, Jia Y D, A R H. Journal of Building Materials,2010,13(5),563(in Chinese).
阎培渝,贾耀东,阿茹罕.建筑材料学报,2010,13(5),563.
38 Peng X Q, Huang J M, Ding X. Journal of the Chinese Ceramic Society,2002(6),798(in Chinese).
彭小芹,黄佳木,丁星.硅酸盐学报,2002(6),798.
39 Zhang Q, Sun S Y, Chen K, et al. New Building Materials,2014,41(6),49(in Chinese).
张倩,孙师煜,陈珂,等.新型建筑材料,2014,41(6),49.
40 Liu Y H. Effects of steam curing on swelling and deformation characteristics of cement slurry and mortar. Master’s Thesis, Central South University, China,2008 (in Chinese).
刘友华.蒸汽养护对水泥净浆和砂浆肿胀变形特性的影响.硕士学位论文,中南大学,2008.
41 Wongkeo W, Thongsanitgarn P, Pimraksa K, et al. Materials and Design,2012,35,434.
42 Li B L, You N Q, Zhu G R, et al. Materials Reports B: Research Papers,2019,33(12),4072(in Chinese).
李保亮,尤南乔,朱国瑞,等.材料导报:研究篇,2019,33(12),4072.
43 Zhang J G, Mao Y L, Lu H M. Journal of Chinese Electron Microscopy Society,2015,34(2),105(in Chinese).
张建纲,毛永琳,陆海梅.电子显微学报,2015,34(2),105.
44 Yang W Y. Journal of Chinese Electron Microscopy Society,2000(4),523(in Chinese).
杨文言.电子显微学报,2000(4),523.
45 Lothenbach B, Winnefeld F, Alder C, et al. Cement and Concrete Research,2006,37(4),483.
46 Chen F Q. The World of Building Materials,2011,32(3),7(in Chinese).
陈凤琴.建材世界,2011,32(3),7.
47 Li B L, Wang S, Pan D, et al. Journal of the Chinese Ceramic Society,2019,47(7),891(in Chinese).
李保亮,王申,潘东,等.硅酸盐学报,2019,47(7),891.
48 Yazici H, Yigiter H, Karabulut A g, et al. Fuel,2008,87(12),2401.
49 Barbarulo R, Peycelon H, Leclercq S. Cement and Concrete Research,2007,37(8),1176.
50 Li Y D, Lu Z Y, Pei L, et al. Bulletin of the Chinese Ceramic Society,2018,37(7),2331(in Chinese).
李亚东,路征远,裴磊,等.硅酸盐通报,2018,37(7),2331.
51 Aldea C M, Young F, Wang K J, et al. Cement and Concrete Research,2000,30(3),465.
52 Ke C J, Liu X W. Journal of Guiyang University (Natural Sciences),2006(4),1(in Chinese).
柯昌君,刘秀伟.贵阳学院学报(自然科学版),2006(4),1.
53 Wang Z J, Sha A M. Journal of Chongqing Jianzhu University,2008,30(6),155(in Chinese).
王振军,沙爱民.重庆建筑大学学报,2008,30(6),155.
54 Yan S L. Effect of anhydrous gypsum of FBC on the properties of concrete and interfacial transition zone. Master’s Thesis, Shijiazhuang Tiedao University, China,2017(in Chinese).
阎圣龙.固硫灰渣中无水石膏对混凝土性能及界面过渡区的影响研究.硕士学位论文,石家庄铁道大学,2017.
55 Mehta P K, Monteiro P J M. Concrete: microstructure, properties, and materials, 2nd Edition, The McGraw-Hill Companies, Inc,2001.
56 Shi J Y, Liu B J, He Z H, et al. Construction and Building Materials,2020,252(5),119095.
57 Patel H H, Bland C H, Poole A B. Cement and Concrete Research,1995,25(3),485.
58 Fu Y, Xie P, Gu P, et al. Cement and Concrete Research,1994,24(6),1015.
59 Zou C, Long G C, Xie Y J, et al. Microporous and Mesoporous Materials,2019,288,1.
60 Liu J H, Farzadnia N, Shi C J. Construction and Building Materials,2020,231,117142.
61 Wang F Z, Liu C, Liu Y P, et al. Concrete,2019(10),110(in Chinese).
王发洲,刘晨,刘云鹏,等.混凝土,2019(10),110.
62 Nie S, Zhang W Q, Hu S G, et al. Construction and Building Materials,2018,168,522.
63 Li Y M, He Z M, Shen H B, et al. Journal of Water Resources and Water Engineering,2019,30(1),176(in Chinese).
李一鸣,贺智敏,沈黄冰,等.水资源与水工程学报,2019,30(1),176.
64 Shen P L, Lu L N, Chen W, et al. Construction and Building Materials,2017,152,57.
65 Zhang H R, Ji T, Zeng X P, et al. Construction and Building Materials,2018,192,489.
66 Xue L L, Jiang Y H, Yang L, et al. Bulletin of the Chinese Ceramic Society,2015,34(9),2662(in Chinese).
薛力梨,蒋元海,杨琳,等.硅酸盐通报,2015,34(9),2662.
67 Aydin S, Baradan B. Materials and Design,2012,35,374.
68 Liu Z Y, Bu L K, Wang Z X, et al. Construction and Building Materials,2019,209,679.
69 Helmi M, Hall M R, Stevens L A, et al. Construction and Building Materials,2016,105,554.
70 Huang Z Y, Ou Y Y, Li C W. Bulletin of the Chinese Ceramic Society,2015,34(10),2925(in Chinese).
黄政宇,区杨荫,李操旺.硅酸盐通报,2015,34(10),2925.
71 Hu Y Y, He T S, Zhang X Z, et al. Bulletin of the Chinese Ceramic Society,2014,33(10),2695(in Chinese).
胡延燕,何廷树,张贤哲,等.硅酸盐通报,2014,33(10),2695.
72 Gonzalez-Corominas A, Etxeberria M, Poon C S. Cement and Concrete Composites,2016,71,77.
73 Wu Z W, Lian H Z. High Performance Concrete, China Railway Publi-shing House, China,1999(in Chinese).
吴中伟,廉慧珍.高性能混凝土,中国铁道出版社,1999.
74 Geng J, Peng B, Sun J Y. Journal of Building Materials,2011,14(1),116(in Chinese).
耿健,彭波,孙家瑛.建筑材料学报,2011,14(1),116.
75 Li G, Gao X. Journal of Southeast University (English Edition),2018,34(4),488.
76 Liu Z, Bu L K, Wang Z X, et al. Construction and Building Materials,2019,209,679.
77 Kjellsen K O, Detwiler R J, Odd E G. Cement and Concrete Research,1990,20(6),927.
78 He Z M, Long G C, Xie Y J, et al. Journal of Building Materials,2012,15(2),190(in Chinese).
贺智敏,龙广成,谢友均,等.建筑材料学报,2012,15(2),190.
79 Shi J Y, Liu B J, Zhou F, et al. Construction and Building Materials,2020,252,119104.
80 Ba M F, Qian C X, Guo X J, et al. Construction and Building Materials,2010,25(1),123.
81 Jiang P, Jiang L H, Zha J, et al. Construction and Building Materials,2017,144,677.
82 Wei L L, He Z M, Li Y M, et al. Journal of Water Resources and Water Engineering,2020,31(1),179(in Chinese).
魏玲玲,贺智敏,李一鸣,等.水资源与水工程学报,2020,31(1),179.
83 Xiong R R, Long G C, Xie Y J. Journal of the Chinese Ceramic Society,2017,45(2),175(in Chinese).
熊蓉蓉,龙广成,谢友均,等.硅酸盐学报,2017,45(2),175.
84 He T S, Xie B. Bulletin of the Chinese Ceramic Society,2017,36(3),1030(in Chinese).
何廷树,谢彪.硅酸盐通报,2017,36(3),1030.
85 Li G, Zhou J C, Yue J, et al. Construction and Building Materials,2020,235,117465.
86 Ilić B, Radonjanin V, Malećev M, et al. Construction and Building Materials,2017,133,243.
87 Khatib J M, Wild S. Cement and Concrete Research,1996,26(10),1545.
88 Ilić B, Mitrović A, Miliić L, et al. Construction and Building Materials,2018,178,92.
89 Chen T F, Gao X G, Ren M. Construction and Building Materials,2018,158,864.
90 Wu L X, Peng X Q, Yang J F, et al. Cement and Concrete Research,1996,26(7),1109.
91 Zhao Q Y, He B, Cui X Y, et al. Journal of the Chinese Ceramic Society,2020,48(5),665(in Chinese).
赵秦仪,何兵,崔晓昱,等.硅酸盐学报,2020,48(5),665.
92 Zdeb T. Construction and Building Materials,2019,209,326.
93 Kurdowski W. Cement and Concrete Chemistry, Springer, Netherlands,2014.
94 Zhang H R, Ji T, Lin X Y. Construction and Building Materials,2019,211,688.
95 Chen L, Zheng K R, Xia T B, et al. Case Studies in Construction Mate-rials,2019,11,267.
96 Yan X C, Jiang L H, Guo M Z, et al. Construction and Building Mate-rials,2019,195,231.
97 Alexanderson J. Cement and Concrete Research,1979,9(4),507.
98 Mitsuda T, Sasaki K, Ishida H. Journal of the American Ceramic Society,1992,75(7),1858.
99 Isu N, Ishida H, Mitsuda T. Cement and Concrete Research,1995,25(2),243.
[1] 叶强. 工业固废制备透水砖及其孔结构研究进展[J]. 材料导报, 2021, 35(Z1): 274-278.
[2] 张济涛, 耿健, 李东, 朱浩泽. 蒸养条件下硅酸三钙(C3S)水化热动力学特性研究[J]. 材料导报, 2021, 35(8): 8064-8069.
[3] 马驰, 王连慧, 潘崇祥, 刘紫婷, 王娜, 史颖. 泡孔聚合物压电材料的研究进展[J]. 材料导报, 2021, 35(7): 7199-7204.
[4] 刘志勇, 夏溪芝, 陈威威, 张云升, 刘诚. 水泥基材料微结构演变及其传输性能的数值模拟[J]. 材料导报, 2021, 35(3): 3076-3084.
[5] 于本田, 刘通, 王焕, 李盛, 谢超, 苏磊, 李彦林. 机制砂中片状颗粒对水泥胶砂性能的影响[J]. 材料导报, 2021, 35(14): 14058-14064.
[6] 董龙瑞, 杭美艳, 周港明, 贾春, 徐俊伟. 洗罐车泥浆对混凝土性能的影响[J]. 材料导报, 2020, 34(Z2): 242-245.
[7] 陈镇杉, 吴玉生, 彭鹏飞, 黄舟, 陈梅红, 蔡博群. 氟铝络合物对硫酸铝型速凝剂性能的影响[J]. 材料导报, 2020, 34(Z1): 178-180.
[8] 盖海东, 冯春花, 董一娇, 赵倩, 李东旭. 纳米压痕技术应用于水泥基材料的研究进展[J]. 材料导报, 2020, 34(7): 7107-7114.
[9] 戴俊, 钱春香, 陈竞, 庞忠华. 无水乙酸钠对磷酸钾镁水泥水化性能和微观形貌的影响[J]. 材料导报, 2020, 34(6): 6066-6074.
[10] 徐培蓁, 陈发滨, 李泉荃, 任艺楠, 吴春然, 朱亚光. 微生物矿化沉积对再生骨料界面过渡区的影响[J]. 材料导报, 2020, 34(6): 6095-6099.
[11] 李卿, 赵国瑞, 马文有, 余红雅, 刘敏. 选区激光熔化成形多孔Ti6Al4V (ELI)合金的拉伸性能及断裂机制[J]. 材料导报, 2020, 34(4): 4073-4076.
[12] 张学元, 吕春, 张道明, 王丽, 李扬. 稻草纤维在轻骨料混凝土中的增韧性能及劈裂抗拉强度预测模型[J]. 材料导报, 2020, 34(2): 2034-2038.
[13] 杨海涛, 段品佳, 吴瑞东, 刘娟红, 娄百川, 罗坤. 借助激光闪光法研究高强混凝土的低温热学性能[J]. 材料导报, 2020, 34(16): 16043-16048.
[14] 王昊, 李广忠, 葛渊, 刘波, 林黎蔚, 杨保军, 李亚宁, 荆鹏. 核聚变堆用氚增殖剂材料及其制备技术的研究进展与发展趋势[J]. 材料导报, 2020, 34(15): 15075-15082.
[15] 龚莉雯, 郑晓平, 吴志昂, 王璠, 杨子程, 张利, 包锦标. 微孔发泡聚碳酸酯-聚烯烃弹性体共混物[J]. 材料导报, 2020, 34(10): 10197-10200.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed