Please wait a minute...
材料导报  2020, Vol. 34 Issue (15): 15075-15082    https://doi.org/10.11896/cldb.19050070
  无机非金属及其复合材料 |
核聚变堆用氚增殖剂材料及其制备技术的研究进展与发展趋势
王昊1, 李广忠1, 葛渊1, 刘波2, 林黎蔚2, 杨保军1, 李亚宁1, 荆鹏1
1 西北有色金属研究院金属多孔材料国家重点实验室,西安 710016
2 四川大学原子核科学技术研究所,辐射物理与技术教育部重点实验室,成都 610064
Research Progress and Development Trend of Tritium Breeder Materials Preparation Technology for Fusion Reactors
WANG Hao1, LI Guangzhong1, GE Yuan1, LIU Bo2, LIN Liwei2, YANG Baojun1, LI Yaning1, JING Peng1
1 State Key Laboratory of Porous Metal Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an 710016, China
2 Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
下载:  全 文 ( PDF ) ( 2781KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 核聚变能是清洁安全的理想能源,是最终可能解决人类能源问题的途径之一。氚是核聚变的关键原料,自然界中存在稀少,如何利用氘-氚聚变反应产生的中子与含有锂的氚增殖剂材料发生核反应制备氚并使之自持是目前聚变工程堆尚待验证的核心关键技术,且是三大难题之一。
常用氚增殖剂材料包括液态含锂金属与固态含锂陶瓷,目前示范堆型设计主要考虑选用固态陶瓷增殖剂,包括硅酸锂(Li4SiO4)、钛酸锂(Li2TiO3)、锆酸锂(Li2ZrO3)、氧化锂(Li2O)等,并将增殖剂包层设计为球床结构。欧盟氦冷球床包层(HCPB)和中国氦冷固态包层(HCSB)中均选用Li4SiO4小球为增殖剂材料。根据以往设计经验,中国聚变工程实验堆(CFETR)也优先考虑硅酸锂小球作为氚增殖剂材料。本文总结了传统氚增殖剂的制备技术,包括锂同位素分离技术、小球成型工艺技术和成型过程中相纯度控制。分析对比了国内、国外氚增殖剂的常用方法的差异与优劣。通过比较发现传统制备技术获得的氚增殖剂小球的性能差异不大,且随着对氚增殖剂材料研究的推进,性能要求愈发严苛,不仅需要满足聚变堆内服役力学性能、产氚性能的要求,还应注重氚释放性能与安全性。传统球床结构目前存在诸如装载密度较低、小球易破碎堵塞提氚通道等缺陷,甚至会危及聚变堆安全,故需要开发结构和性能更优的新一代先进的增殖剂材料。
本文综述了传统氚增殖剂材料制备技术,同时指出需要开发新型增殖剂材料的理由。重点阐述了新型一体成型多孔氚增殖剂的综合性能优势,并对新型一体成型多孔氚增殖剂材料研究进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王昊
李广忠
葛渊
刘波
林黎蔚
杨保军
李亚宁
荆鹏
关键词:  聚变堆材料  氚自持  固态氚增殖剂  一体成型多孔结构    
Abstract: Fusion energy is the possible ultimate solution to the energy crisis. It has many advantages such as clean and safe. Tritium breeder material is one of the most important materials in fusion reactors, but it exists scarce in nature. How to prepare tritium by nuclear reaction and make it self-sustaining is one of the key technologies to be verified and one of three major issues in fusion engineering reactor. Tritium self-sustaining is achieved by the neutron,which product by the deuterium-tritium fusion reaction, bombard lithium-containing tritium breeder materials.
Commonly used breeder materials include liquid lithium-containing metal and solid lithium-containing ceramics. At present, solid ceramic breeder is mainly considered in the design of demonstration reactor, which include lithium silicate (Li4SiO4), lithium titanate (Li2TiO3), lithium zirconate (Li2ZrO3), lithium oxide (Li2O), etc. Li4SiO4 pebble was selected as tritium breeder material in the EU helium cooled pebble bed blanket and China helium cooled solid breeder test blanket module. According to past design experience, lithium silicate pebble is also preferred as tritium breeder material in China Fusion Engineering Test Reactor (CFETR). This review offered preparation method of tritium breeder — the lithium isotope separation, pebble forming process and phase purity control were reviewed. The differences and advantages of these methods were summarized and compared. It was found that the performance of tritium breeder pebble obtained by traditional preparation method was close. With the advancement of research on tritium breeder materials, the performance requirements become ever more stringent. It was not only needed mechanical properties and tritium production performance in fusion reactor, but also needs to pay attention to tritium release performance and safety.In addition, the traditional pebble bed structure has some defects, such as low loading density and fragile.On account of fragment pebble will block the channel for tritium release, and influence safety of fusion reactor, therefore, it is urgent to develop a new generation of advanced bree-ding materials with better structure and performance.
In this paper, the preparation method of traditional tritium breeder material was reviewed, and the reasons for developing a new type of breeder material pointed out. Finally, the comprehensive performance advantages of the new porous tritium breeders were emphatically expounded and the prospects of new porous tritium breeders were presented.
Key words:  fusion reactor material    tritium self-sustained    solid tritium breeder    integral porous structure
               出版日期:  2020-08-10      发布日期:  2020-07-14
ZTFLH:  TL349  
基金资助: 国家自然科学基金项目
通讯作者:  liubo2009@scu.edu.cn   
作者简介:  王昊,西北有色金属研究院金属多孔材料国家重点实验室助理工程师、助理研究员。主要从事多孔材料制备技术与应用研究。
李广忠,西北有色金属研究院教授级高级工程师、研究员。主要从事纳米多孔材料、金属多孔材料以及多层复合膜材料领域的理论、技术开发和应用研究工作。近年来,发表学术论文70多篇;其中以第一作者发表22篇,SCI收录15篇以上。申请专利50多项,获授权发明专利30项。获中国有色金属工业科学技术奖一等奖一项;西安市科技进步二等奖一项。
刘波,博士,四川大学原子核科学技术研究所副研究员,硕士研究生导师。2008年于西安交通大学材料科学与工程学院获博士学位。2009年3月到四川大学原子核科学技术研究所工作,2013年10月至2014年月9月公派去法国巴黎十一大(国家纳米器件科学研究中心)从事研究工作。主要研究领域有先进功能薄膜制备及表征、离子束薄膜表面改性及研究、新型聚变堆结构材料制备及辐照效应等。
引用本文:    
王昊, 李广忠, 葛渊, 刘波, 林黎蔚, 杨保军, 李亚宁, 荆鹏. 核聚变堆用氚增殖剂材料及其制备技术的研究进展与发展趋势[J]. 材料导报, 2020, 34(15): 15075-15082.
WANG Hao, LI Guangzhong, GE Yuan, LIU Bo, LIN Liwei, YANG Baojun, LI Yaning, JING Peng. Research Progress and Development Trend of Tritium Breeder Materials Preparation Technology for Fusion Reactors. Materials Reports, 2020, 34(15): 15075-15082.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19050070  或          http://www.mater-rep.com/CN/Y2020/V34/I15/15075
1 Konishi S, Enoeda M, Nakamichi M, et al. Nuclear Fusion, 2017, 57(9), 7.2 Gao X, Chen X, Mei G, et al. Journal of Nuclear Mate-rials, 2012, 424(1-3), 210.3 Ying A, Akiba M, Boccaccini L V, et al. Journal of Nuclear Materials, 2007, 367(367), 1282.4 Tsuchiya K, Nakamichi M, Kikukawa A, et al.Journal of Nuclear Mate-rials, 2002, 307(2), 817.5 Yuan T, Feng K M, Wang X Y, et al.Nuclear Fusion and Plasma Physic, 2006,26(3),196 (in Chinese).袁涛, 冯开明, 王晓宇, 等. 核聚变与等离子体物理, 2006, 26(3), 196.6 Zhao F C, Feng K M, Cao Q X, et al.Nuclear Fusion and Plasma Physic, 2018,38(2), 184 (in Chinese).赵奉超, 冯开明, 曹启祥, 等. 核聚变与等离子体物理,2018,38(2), 184.7 Roux N, Johnson C, Noda K.Journal of Nuclear Materials, 1992, 191-194(part-PA), 17.8 Zhu D Q, Chen X J, Peng S M. Materials Review, 2008,22(9),74(in Chinese).朱德琼, 陈晓军, 彭述明. 材料导报,2008,22(9),74.9 Symons E A.Separation Science and Technology, 2006, 20(9-10), 635.10 Gu Z G, Li Z J, Yang J.Progress in Chemistry, 2011,23(9),1893(in Chinese).顾志国, 李在均,杨杰.化学进展,2011,23(9),1893.11 Lewis G N, Macdonald R T.Journal of the American Chemical Society, 1936, 58(12), 2519.12 Brooks S C, Southworth G R.Environmental Pollution, 2011, 159(1), 219.13 Song Yunfeng, Zhao Zhongwei.Rare Metals and Cemented Carbides, 2018(3),38(in Chinese).宋云峰, 赵中伟.稀有金属与硬质合金,2018(3),38.14 Pedersen C J. Journal of the American Chemical Society, 1967, 89(26), 7017.15 Jepson B E, Dewitt R.Journal of Inorganic & Nuclear Chemistry, 1976, 38(6), 1176.16 Fu L A, Fang S Q, Yao Z Q, et al. Journal of Nuclear and Radiochemistry, 1989,11(3),142 (in Chinese).傅立安, 方胜强, 姚钟麒, 等. 核化学与放射化学,1989,11(3),142.17 Fang S Q, Fu L A.Journal of Isotopes, 1994, 7(3), 168(in Chinese).方胜强, 傅立安. 同位素,1994, 7(3), 168.18 Davoudi M, Mallah M H.Annals of Nuclear Energy, 2013, 62, 499.19 Zhou W, Sun X L, Gu L, et al.Journal of Radioanalytical & Nuclear Chemistry, 2014, 300(2), 843.20 Feng Y, Liu H, Pei H, et al. Journal of Radioanalytical & Nuclear Chemistry, 2017, 311(3), 2061.21 Arisawa T, Maruyama Y, Suzuki Y, et al. Applied Physics B, 1982, 28(1), 73.22 Saleem M, Hussain S, Rafiq M, et al. Journal of Applied Physics, 2006, 100(5), 2433.23 Black J R, Umeda G, Dunn B, et al. Journal of the American Chemical Society, 2009, 131(29), 9905.24 Zhao L J, Xiao C J, Chen X J, et al. Journal of Nuclear and Radioche-mistry, 2015, 37(3),131(in Chinese).赵林杰, 肖成建, 陈晓军, 等. 核化学与放射化学,2015, 37(3),131.25 Xing Z H. Nuclear Power Engineering, 1999(1), 25(in Chinese).邢忠虎. 核动力工程,1999(1), 25.26 Zhu D Q, Peng S M, Chen X J, et al. Chemical Research and Application, 2010, 22(1), 38(in Chinese).朱德琼, 彭述明, 陈晓军, 等. 化学研究与应用,2010, 22(1), 38.27 Yin B Y, Niu K. Atomic Energy Science and Technology, 2011, 45(1), 73(in Chinese).尹邦跃, 牛恺. 原子能科学技术,2011, 45(1), 73.28 Yu C L, Yanagisawa K, Kamiya S, et al. Ceramics International, 2014, 40(1), 1901.29 Wen Z, Zhou Q, Xue L, et al. Journal of Nuclear Materials, 2015, 464, 389.30 Gong Y, Yu X, Mao Y, et al. Materials Letters, 2015, 159, 245.31 Mao Y, Ran G, Wang H, et al. Journal of Nuclear Materials, 2018, 503,152.32 Zhao J K, Wang H Y, Luo Y M, et al.Nuclear Power Engineering, 1993(4), 381(in Chinese).赵君科, 王和义, 罗阳明, 等. 核动力工程,1993(4), 381.33 Lu W, Wang J, Pu W, et al. Journal of Nuclear Materials, 2018, 502, 349.34 Wu X, Wen Z, Xu X, et al. Journal of Nuclear Materials, 2009, 392(3), 471.35 Yu X, Mao Y, Lu T, et al.Journal of Nuclear Materials, 2015, 456, 455.36 Xiang M, Zhang Y, Wang C, et al.Ceramics International, 2017, 43(2), 2314.37 Niu K, Yang H G. Progress Report on China Nuclear Science & Technology Vol.2. China Atomic Energy Press Aep, China, 2011,pp. 2 (in Chinese).牛恺, 杨洪广. 中国核科学技术进展报告第二卷, 中国原子能出版社, 2011,pp. 2.38 Lulewicz J D, Roux N.Journal of Nuclear Materials, 2002, 307(3), 803.39 Lulewicz J D, Roux N, Piazza G, et al. Journal of Nuclear Materials, 2000, 283(4), 1361.40 Kolb, Matthias H H, Regina, et al. Fusion Engineering & Design, 2011, 86(9), 2149.41 Zarins A, Supe A, Kizane G, et al.Journal of Nuclear Materials, 2012, 429(1-3), 36.42 Chen X J, Wang H Y, Luo Y M, et al. Nuclear Fusion and Plasma Physics, 2006, 26(3), 213 (in Chinese).陈晓军, 王和义, 罗阳明, 等. 核聚变与等离子体物理,2006, 26(3), 213.43 Hua T, Yu T W, Wei J Z,et al.Advanced Materials Research, 2013, 624, 208.44 Zhai Y W, Hu J, Zhu X Q,et al. Key Engineering Materials, 2016, 697, 4.45 Feng Y J, Feng K M, Cao Q X,et al. Fusion Engineering & Design, 2012, 87(5-6), 753.46 Li Y J, Xu C, Li L,et al.The Chinese Journal of Nonferrous Metals, 2013(1), 187(in Chinese).李运姣, 徐仓, 李林, 等. 中国有色金属学报,2013 (1), 187.47 Wu X, Wen Z, Xu X,et al. Fusion Engineering & Design, 2010, 85(2), 222.48 Tsuchiya K, Kawamura H, Uchida M, et al.Fusion Engineering & Design, 2003, 69(1-4),449.49 Gao X L, Chen X J, Gu M,et al.Atomic Energy Science and Technology, 2010, 44(9), 1099 (in Chinese).高小铃, 陈晓军, 古梅, 等. 原子能科学技术,2010, 44(9), 1099.50 Chen X, Yang H G, Zhan Q,et al. Annual Report of China Institute of Atomic Energy, 2013, 35(6), 159 (in Chinese).陈星, 杨洪广, 占勤, 等. 中国原子能科学研究院年报,2013, 35(6), 159.51 Sun J F, Wang H Y, Wang L X,et al. Mining and Metallurgical Engineering, 2011, 31(6), 116 (in Chinese).孙敬锋, 王海燕, 王林祥, 等. 矿冶工程,2011, 31(6), 116.52 Ran G, Xiao C, Chen X, et al. Journal of Nuclear Materials, 2017, 492, 189.53 Hoshino T.Fusion Engineering & Design, 2014, 89(7-8), 1432.54 Xiang M, Zhang Y, Yun Z,et al. Fusion Engineering & Design, 2016, 102, 1.55 Ming H, Zhang Y, Mi Y,et al. Journal of Nuclear Materials, 2013, 441(1-3), 390.56 Xiang M, Zhang Y, Yun Z,et al. Fusion Engineering & Design, 2017, 116, 17.57 Yang Y, Liu W, Hu Y,et al. Chemical Engineering Journal, 2018, 353, 92.58 Piazza, Reimann, GÜnther,et al. Fusion Engineering & Design, 2001, 58(1), 657.59 Feng K M. Nuclear Fusion and Plasma Physics, 2006, 26(3), 166(in Chinese).冯开明. 核聚变与等离子体物理,2006, 26(3), 166.60 Sharafat S, Williams B, Ghoniem N,et al. Fusion Engineering & Design, 2016, 109-111, 119.61 李广忠,汪强兵,李亚宁,等.中国专利,11521796.X, 2018.
[1] 郑莉芳, 崔哲, 王兆中, 谢亚杰, 岳丽娜, 陈璇琪. γ辐照作用下GFRP电绝缘性能及其微观结构机理研究[J]. 材料导报, 2020, 34(8): 8179-8183.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed