Please wait a minute...
材料导报  2020, Vol. 34 Issue (15): 15083-15091    https://doi.org/10.11896/cldb.19050154
  无机非金属及其复合材料 |
非饱和水泥基复合材料的氯离子传输性能研究进展
刘志勇1,2, 汤安琪2, 王加佩2, 张云升1
1 东南大学江苏省土木工程材料重点实验室,南京 211189
2 中国矿业大学深部岩土力学与地下工程国家重点实验室,徐州 221116
Research Progress on Chloride Ion Transport Properties in Unsaturated Cement-based Composites
LIU Zhiyong1,2, TANG Anqi2, WANG Jiapei2, ZHANG Yunsheng1
1 Jiangsu Key Laboratory of Civil Engineering Materials, Southeast University, Nanjing 211189,China
2 State Key Laboratory of Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, China
下载:  全 文 ( PDF ) ( 3501KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 混凝土结构过早失效及日常维护等耐久性问题近年来引起了极大的关注,氯离子传输是决定钢筋混凝土结构使用寿命预测和耐久性评估的重要因素之一。由于在结构工程实际服役过程中,水泥基复合材料很难达到饱和状态,近年来越来越多的学者研究非饱和状态下水泥基材料氯离子的传输性能。
过去几十年里,有各种不同测试氯离子传输的实验方法,如自然扩散法、电迁移法、电阻法和压力渗透法等。虽然自然扩散法符合实际情况,但是操作繁琐,达到稳态扩散非常耗时。为了加速氯离子的迁移,研究者们提出了电加速实验、加压力渗透的方法。除了传统的氯离子传输实验外,也有一些新的实验方法被提出,如半电池法,根据元素示踪法测定氯离子分布。
除了实验外,还可通过模型来模拟氯离子在非饱和水泥基复合材料中的传输,依据模型主要有考虑氯离子扩散的Fick定律,考虑扩散和对流耦合的扩散-对流模型。此外,考虑湿度、干湿交替和水分子传输等影响因素,研究者们从不同角度建立了氯离子传输模型。
本文综述了氯离子在非饱和水泥基复合材料中的传输性能,包括氯离子的传输实验、氯离子非饱和传输模型和氯离子传输的影响因素。最后对现有研究进行了总结:非饱和水泥基复合材料的传输性能在很大程度上取决于材料的水分含量,低于临界饱和度时由于没有水分连通孔隙导致氯离子无法传输;掺合料混凝土比普通硅酸盐水泥(OPC)混凝土有更小的氯离子扩散系数;扩散-对流模型更适用于非饱和水泥基材料。展望未来,需要简单、准确的实验方法,考虑多方面因素对氯离子传输的影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘志勇
汤安琪
王加佩
张云升
关键词:  水泥基材料  非饱和状态  氯离子  传输实验  传输模型    
Abstract: Durability problems such as premature failure of concrete structures and routine maintenance have drawn great attention in recent years. Chloride ion transport is one of the important factors determining the service life prediction and durability evaluation of reinforced concrete structures. Due to the fact that cement-based composite materials are difficult to reach saturation during the actual service of structural engineering, more and more people have studied the transport properties of chloride-based materials in cement-based materials in unsaturated state in recent years.
In the past few decades, there have been various experimental methods for testing chloride ion transport, such as natural diffusion, electromigration, electrical resistance, and pressure infiltration. Although the natural diffusion method is in line with the actual situation, the operation is cumbersome and it is very time consuming to achieve steady state diffusion. In order to accelerate the migration of chloride ions, the researchers proposed an electric acceleration experiment and a method of adding pressure. In addition to the traditional chloride ion transfer experiments, some new experimental methods have been proposed, such as the half-cell method, to determine the chloride ion distribution according to the elemental tracer method.
In addition to experiments, models can be used to simulate the transport of chloride ions in unsaturated cement-based composites. According to the model, Fick's law, which considers the diffusion of chloride ions, and diffusion-convection models considering diffusion and convection coupling are considered. In addition, considering the influencing factors such as humidity, dry-wet alternation and water molecule transport, the researchers established a chloride ion transport model from different angles.
In this paper, the transport properties of chloride ions in unsaturated cement-based composites are reviewed, including: chloride ion transport experiments, chloride ion unsaturated transport models, and chloride ion transport factors. Finally, the existing research is summarized: the transmission performance of unsaturated cement-based composites depends largely on the moisture content of the material; below the critical saturation, the chloride ions cannot be transported due to the absence of moisture-connected pores; the admixture concrete has a smaller chloride ion diffusion coefficient than OPC concrete; the diffusion-convection model is more suitable for unsaturated cement-based materials. Looking to the future, simple and accurate experimental methods are needed to consider the impact of various factors on chloride ion transport.
Key words:  cement-based material    unsaturated state    chloride ion    transmission experiment    transmission model
               出版日期:  2020-08-10      发布日期:  2020-07-14
ZTFLH:  TU528  
基金资助: 国家自然科学基金面上项目(51778613)
通讯作者:  liuzhiyong0728@163.com   
作者简介:  刘志勇,东南大学研究员。2013年毕业于东南大学,获工学博士学位。主要从事结构混凝土的耐久性及寿命预测、生态环保型建筑材料的制备与性能、胶凝材料微结构的计算机模拟等方向的研究。
引用本文:    
刘志勇, 汤安琪, 王加佩, 张云升. 非饱和水泥基复合材料的氯离子传输性能研究进展[J]. 材料导报, 2020, 34(15): 15083-15091.
LIU Zhiyong, TANG Anqi, WANG Jiapei, ZHANG Yunsheng. Research Progress on Chloride Ion Transport Properties in Unsaturated Cement-based Composites. Materials Reports, 2020, 34(15): 15083-15091.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19050154  或          http://www.mater-rep.com/CN/Y2020/V34/I15/15083
1 Saetta A V, Scotta R V, Vitaliani R V.Materials Journal, 1993, 90(5), 441.2 Maekawa K, Chaube R, Kishi T. In: E and FN SPON, London, 1999.3 Scheidegger A.The physics of flow through porous media,University of Toronto Press, London, 1958.4 Zhao Tiejun. Concrete permeability, Science Press, China, 2006 (in Chinese).赵铁军.混凝土渗透性,科学出版社, 2006.5 Thomas M, Hooton R, Scott A, et al.Cement and Concrete Research, 2012, 42(1), 1.6 Feldman R, Sereda P. Engineering Journal, 1970, 53(8-9), 53.7 Liu Z, Zhang Y, Liu L, et al. Construction and Building Materials, 2013, 48, 647.8 AEC Laboratory. Concrete testing, hardened concrete, Chloride penetration, APM302, 2nd ed. AEC Laboratory, Vedbek, Denmark,1991.9 Guimarães A T, Helene P R D L. International RILEM Workshop: Proceedings PRO-56: Integral Service Life Modelling of Concrete Structures, Bagneux, France, 2007, 63.10 Guimarães A, Helene P.Special Publication, 2005, 229, 175.11 Climent M A, De Vera G, Lopez J F, et al.Cement and Concrete Research, 2002, 32(7), 1113.12 Climent-Llorca M, Viqueira-Perez E, De Vera-Almenar G, et al. Cement and Concrete Research, 1998, 28(2), 209.13 Whiting D. In: Final Report Portland Cement Association, Skokie, IL. Construction Technology Labs, 1981.14 Testing A S F, Concrete M C C O, Aggregates C. Standard test method for electrical indication of concrete′s ability to resist chloride ion penetration, ASTM International, 2012.15 Dhir R, Jones M, Ahmed H, et al.Magazine of Concrete Research, 1990, 42(152), 177.16 Zhang M H, Gjorv O E.Materials Journal, 1991, 88(5), 463.17 Luping T, Nilsson L O. Materials Journal, 1993, 89(1), 49.18 Massat M. Caractérisation de la microfissuration, de la perméabilité et de la diffusion d′un béton: application au stockage des déchets radioactifs. Ph.D. Thesis, Toulouse, INSA, 1991.19 Ma L G, Zhang Y S. In: National Academic Forum of Civil Engineering, Southeast University. China, 2009 (in Chinese).马立国, 张云升. 全国土木工程研究生学术论坛, 东南大学,2009.20 Aashto Designation T277-83. In: American Association of State Highway and Transportation, Officials Washington D.C., 1983.21 Zhang T, Gjørv O E. Cement and Concrete Research, 1994, 24(8), 1534.22 Olsson N, Baroghel-Bouny V, Nilsson L O, et al. Cement and Concrete Composites, 2013, 40, 40.23 Haynes W M. CRC handbook of chemistry and physics, CRC Press, 2014.24 Polder R, Andrade C, Elsener B, et al. Materials & Structures, 2000, 33(10), 603.25 Andrade C, Alonso C, Arteaga A, et al. In: Proceedings of the 5th CANMET/ACI International Conference on Durability of Concrete. Barcelona, Spain, 2000, pp. 899.26 Dridi W, Lacour J L. Cement and Concrete Research, 2014, 63, 46.27 Halamickova P, Detwiler R J, Bentz D P, et al. Cement and concrete research, 1995, 25(4), 790.28 Glasser F, Zhang L. Cement and Concrete Research, 2001, 31(12), 1881.29 Zhang Y. Study on transport mechanism of chloride ion in concrete. Ph.D. Thesis, Zhejiang University, China, 2008 (in Chinese).张奕. 氯离子在混凝土中的输运机理研究. 博士学位论文,浙江大学, 2008.30 Luping T, Nilsson L O. Nordic Concrete Research. 1992, 11, 16231 Luping T, Gulikers J. Cement and Concrete Research, 2007, 37(4), 589.32 Yu H F, Sun W, Ma H Y, et al. Journal of Building Materials, 2002, 5(3), 240 (in Chinese).余红发, 孙伟, 麻海燕, 等. 建筑材料学报, 2002, 5(3), 240.33 Wang X Y, Li Z J. Journal of Building Materials, 1999(3), 249 (in Chinese).王新友, 李宗津. 建筑材料学报, 1999(3), 249.34 Collepardi M, Marcialis A, Turriziani R. Journal of the American Ceramic Society, 1972, 55(10),534. 35 Dura Crete. General guidelines for durability design and redesign. Dura Crete,Bruxelles,2000.36 Amey S L, Johnson D A, Miltenberger M A, et al. Structural Journal, 1998, 95(2), 205.37 Ye H, Jin N, Jin X, et al.Construction and Building Materials, 2012, 36, 259.38 Pan Z C, Chen A R. Journal of Tongji University: Natural Science, 2011, 39(3), 314 (in Chinese).潘子超, 陈艾荣. 同济大学学报:自然科学版, 2011, 39(3), 314.39 Yuan L Q, Sun C T, Cheng H Y. Concrete, 2015(6), 32 (in Chinese).袁利强, 孙丛涛, 程火焰. 混凝土, 2015(6), 32.40 Cao W Q. Chloride transport and cover protection of concrete under drying-wetting cycles.Ph.D. Thesis, Xi’an University of Architecture & Technology, China, 2013 (in Chinese)曹卫群. 干湿交替环境下混凝土的氯离子侵蚀与耐久性防护. 博士学位论文,西安建筑科技大学, 2013.41 Li C Q, Li K F. Journal of the Chinese Ceramic Society, 2010, 38(4) 581 (in Chinese).李春秋, 李克非. 硅酸盐学报, 2010, 38(4), 581.42 Lin G, Liu Y H. Journal of Wuhan Polytechnic University, 2009, 28(3), 68 (in Chinese). 林刚, 刘应华. 武汉工业学院学报, 2009, 28(3), 68.43 Guan P. Concrete, 2012 (11), 7 (in Chinese).关鹏.混凝土, 2012 (11), 7.44 Wu J X. Modelling and simulation of chloride ion transmission in concrete. Master's Thesis, Harbin Institute of Technology, China, 2012(in Chinese).吴静新. 混凝土内氯离子传输模型及其数值研究. 硕士学位论文,哈尔滨工业大学, 2012.45 Boddy A, Bentz E, Thomas M, et al. Cement and Concrete Research, 1999, 29(6), 827.46 Jin W L, Zhang Y, Lu Z Y. Journal of the Chinese Ceramic Society, 2008, 36(10), 1362 (in Chinese).金伟良, 张奕, 卢振勇.硅酸盐学报, 2008, 36(10), 1362.47 Zhang M, Ye G, Breugel K V.Cement & Concrete Research, 2012, 42(11), 1524.48 Liu Z, Zhang Y, Jiang Q. Construction and Building Materials, 2014, 53, 26.49 Liu Z, Zhang Y, Jiang Q, et al. Journal of Materials in Civil Enginee-ring, 2013, 26(12), 04014090.50 Rajabipour F. Insitu electrical sensing and material health monitoring in concrete structures. Ph.D. Thesis, Purdue University, USA, 2006.51 Guimarães A T C, Climent M A, Vera G D, et al.Construction & Buil-ding Materials, 2011, 25(2), 785.52 Buchwald A. In: 3rd int. PhD symposium. Wien, Austria, 2000, pp.475.53 Nielsen E P, Geiker M R. Cement & Concrete Research, 2003, 33(1), 133.54 Mercado-Mendoza H, Lorente S, Bourbon X.Construction & Building Materials, 2014, 51(1) 1.55 Zhang M, Xu K, He Y, et al. Construction & Building Materials, 2014, 64(30), 222.56 Badmann R, Stockhausen N, Setzer M J.Journal of Colloid & Interface Science, 1981, 82(2), 534.57 Daian J F, Gallé C.Magazine of Concrete Research, 2000, 52(4), 251.58 Guimarães A, Helene P. In: Proc. of the 3rd Int. Workshop on Testing and Modeling the Chloride Ingress Into Concrete, RILEM Publications, Cachan, France, 2004, pp.237.59 Nilsson L O. In: 2nd International Workshop on Testing and Modelling theChloride Ingress into Concrete, Paris, France, 2000, 261.60 Srinivasan S, Selvaraj R, Muralidharan S.Structural Concrete, 2003, 4(1), 19.61 Weiss J, Snyder K, Bullard J W, et al.Journal of Materials in Civil Engineering, 2013, 25(8), 1097.62 Khalil K A.Materials Letters, 1996, 26(4-5), 259.63 Song H W, Pack S W, Nam S H, et al.Construction & Building Mate-rials, 2010, 24(3), 315.64 Bijen J.Construction & Building Materials, 1996, 10(5), 309.65 Chen H J, Huang S S, Tang C W, et al.Construction & Building Mate-rials, 2012, 35(35), 1063.66 Leng F, Feng N, Lu X.Cement & Concrete Research, 2000, 30(6), 989.67 Duan P, Shui Z, Chen W, et al.Journal of Materials Research and Technology, 2013, 2(1), 52.68 Fraj A B, Bonnet S, Khelidj A.Construction & Building Materials, 2012, 35(35), 761.69 Kayyali O, Haque M.Magazine of Concrete Research, 1995, 47(172), 235.70 Wiens U, Schiessl P. In: Proceedings of the 10th ICCC, Goteborg, Sweden, 1997, pp.4.71 Saraswathy V, Song H W.Corrosion Reviews, 2006, 24(1-2), 87.72 Jain J A, Neithalath N. Cement and Concrete Composites, 2010, 32(2), 148.73 Zhang Y. In: The 14th International Congress on the Chemistry of Cement 2015. Beijing, 2015.74 Yu Z, Ye G.Construction and Building Materials, 2013, 45, 30.75 Li G, Zhao X.Cement and Concrete Composites, 2003, 25(3), 293.76 Kandasamy S, Shehata M H.Construction and Building Materials, 2014, 53, 267.77 Li D, Shen J, Chen Y, et al.Cement and Concrete Research, 2000, 30(9), 1381.78 Vera G D, Climent M A, Viqueira E, et al.Cement & Concrete Research, 2007, 37(5), 714.79 Nguyen T Q, Petković J, Dangla P, et al.Construction and Building Materials, 2008, 22(11), 2185.80 Li K, Li C, Chen Z.Cement and Concrete Composites, 2009, 31(10), 693.81 Spragg R P, Castro J, Li W, et al. Cement and Concrete Composites, 2011, 33(5), 535.
[1] 盖海东, 冯春花, 董一娇, 赵倩, 李东旭. 纳米压痕技术应用于水泥基材料的研究进展[J]. 材料导报, 2020, 34(7): 7107-7114.
[2] 秦晓川,刘加平,石亮,穆松,蔡景顺,吴贞杰,周霄骋,刘建忠. 荷载与氯离子耦合作用下混凝土耐久性试验方法与装置的研究进展[J]. 材料导报, 2020, 34(3): 3106-3115.
[3] 石亮, 谢德擎, 王学明, 袁俊, 穆松, 魏鹏, 朱梦伟. 抗侵蚀抑制剂对混凝土吸水性能及抗盐结晶性能的影响[J]. 材料导报, 2020, 34(14): 14093-14098.
[4] 梁辰, 吴艳青, 王大伟, 王晗, 刘乐乐, 赵丕琪. 纳米TiO2光催化水泥基材料的研究进展[J]. 材料导报, 2019, 33(Z2): 267-272.
[5] 陈昌, 杨绿峰, 余波. 海洋潮汐区混凝土表面氯离子浓度的时变规律及多因素模型[J]. 材料导报, 2019, 33(Z2): 321-326.
[6] 陈庆, 王慧, 蒋正武, 朱合华, 马瑞. 基于中心粒子模型的超高性能水泥基材料水化进程模拟[J]. 材料导报, 2019, 33(8): 1312-1316.
[7] 臧文洁, 郭丽萍, 曹园章, 张健, 薛晓丽. 内掺氯离子与硫酸根离子在水泥净浆中的交互作用[J]. 材料导报, 2019, 33(8): 1317-1321.
[8] 李海南, 马保国, 谭洪波, 梅军鹏. TiO2纳米颗粒对水泥-粉煤灰体系水化硬化及氯离子侵蚀的影响[J]. 材料导报, 2019, 33(4): 630-633.
[9] 张则瑞, 吴建东, 杨敬斌, 周建和, 李东旭. 氧化石墨烯对水泥基自流平砂浆性能的影响[J]. 材料导报, 2019, 33(2): 240-245.
[10] 吴彰钰, 余红发, 麻海燕, 冯滔滔, 达波. 基于可靠度的海洋浪溅区大掺量矿渣混凝土结构服役寿命预测[J]. 材料导报, 2019, 33(2): 264-270.
[11] 李荣涛, Christopher Y. TUAN. 考虑热湿影响的氯盐侵蚀下混凝土中多相传输与相变模拟[J]. 材料导报, 2019, 33(18): 3043-3049.
[12] 王耀城,杨文根,李周义,刘伟,刘冰. 利用XCT技术检测水泥基材料微观结构的研究进展[J]. 材料导报, 2019, 33(17): 2902-2909.
[13] 王爱国, 朱愿愿, 李燕, 刘开伟, 徐海燕, 孙道胜, 范良朝. 表面改性硅/铝质材料及其在水泥基材料中应用的研究进展[J]. 材料导报, 2019, 33(15): 2538-2545.
[14] 张王田, 张云升, 吴志涛, 刘乃东, 袁涤非. 玻璃纤维增强水泥基材料组成优化设计与性能[J]. 材料导报, 2019, 33(14): 2331-2336.
[15] 王中平, 杨浩宇, 赵亚婷, 徐玲琳. 不同养护温度下氯化钠对铝酸盐水泥水化的影响[J]. 材料导报, 2019, 33(14): 2343-2347.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed