Please wait a minute...
材料导报  2021, Vol. 35 Issue (7): 7199-7204    https://doi.org/10.11896/cldb.19100193
  高分子与聚合物基复合材料 |
泡孔聚合物压电材料的研究进展
马驰1,2, 王连慧1,2, 潘崇祥3, 刘紫婷1,2, 王娜1, 史颖2
1 沈阳化工大学材料科学与工程学院,沈阳 110142
2 沈阳化工大学高分子产业高端制造研究院,沈阳 110142
3 广西大学物理科学与工程技术学院,南宁 530004
A Review on Cellular Piezoelectric Polymer
MA Chi1,2, WANG Lianhui1,2, PAN Congxiang3, LIU Ziting1,2, WANG Na1, SHI Ying2
1 School of Material Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
2 Advanced Manufacturing Institute of Polymer Industry, Shenyang University of Chemical Technology, Shenyang 110142, China
3 School of Physical Science and Technology, Guangxi University, Nanning 530004, China
下载:  全 文 ( PDF ) ( 2427KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 压电材料是一种重要的功能材料,可以因机械变形产生电场,也可以因电场作用产生机械变形,这种固有的机-电耦合效应是其内部应力与极化密度分布不均匀造成的,从而实现了机械能和电能之间的相互转换。近年来压电材料发展迅速,已在电子技术、激光技术、超声技术、红外探测技术等方面获得应用。传统的压电材料如压电单晶体、多晶体压电陶瓷等,虽然有较高的压电性,但是仍存在以下问题:(1)材料脆性大;(2)材料所能产生的变形量较小;(3)部分材料中含有氧化铅,在制备、使用以及后续处理过程都可能对环境产生危害等。近年来,随着新材料和新工艺的不断开发及完善,作为一种新型压电材料,泡孔压电聚合物材料的出现为解决传统压电材料存在的问题提供了新的思路。在泡孔聚合物压电材料内部存在大量的泡孔,极化后,正负电荷分别排布在泡孔的上下内表面上,在外界应力场或电场的作用下,泡孔聚合物膜上下表面的感应电荷便会进行有序排列,进而表现出与传统压电材料一样的压电和铁电等行为。这种材料不但具有优良的压电性和柔顺性,而且制备工艺简单高效,因而引起了国内外学者的广泛关注。本文归纳了近年来泡孔聚合物压电材料的研究进展,分别对聚烯烃类、聚酯类、环烯共聚物类以及含氟类泡孔压电材料的制备方法、压电性以及热稳定性等方面进行了总结,并对各类材料所面临的问题及其未来的发展方向进行概述,以期为制备具有高压电系数以及良好热稳定性的泡孔聚合物压电材料提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马驰
王连慧
潘崇祥
刘紫婷
王娜
史颖
关键词:  压电聚合物  压电驻极体  微孔结构  压电性    
Abstract: Piezoelectric material is an important functional material, which can realize the mutual conversion between mechanical energy and electric energy. This inherent mechanical-electrical coupling effect is caused by the uneven distribution of its internal stress and polarization density. Piezoelectric materials have been developed rapidly in recent years, and has broad application prospects in the fields of electronic technology, laser technology, ultrasonic technology, and so on. Although traditional piezoelectric materials, such as piezoelectric monocrystal, polycrystalline piezoelectric ceramics, etc. have high piezoelectricity, they still have the following problems: (Ⅰ) this type of materials are too brittle; (Ⅱ) the deformation is too small; (Ⅲ) some materials contain lead oxide, which may be harmful to the environment during the preparation and subsequent processing. In recent years, with the continuous development of new materials and new processes, as a new type of piezoelectric material, the emergence of porous piezoelectric polymer materials provides a new way to solve the problems of traditional piezoelectric materials. There are a large number of cells inside the cell polymer piezoelectric material. By the polarization processing, positive and negative charges are respectively arranged on the upper and lower inner surfaces of the cells. Under the action of external stress field or electric field, the induced charges will be orderly arranged on the upper and lower inner surface of cells, and then they will exhibit the same piezoelectric and ferroelectric behaviors as traditional piezoelectric materials.As a novel type of piezoelectric material, it not only has excellent piezoelectricity and flexibility, but also its preparation process is simple and efficient, which has attracted wide attention of researchers. This review offers a retrospection of the research efforts with cellular piezoelectric polymer in recent years. The preparation methods, piezoelectricity and thermal stability of cellular piezoelectric polymers including polyolefins, polyesters, cycloolefin copolymers and fluoropolymers are respectively reviewed. The problems faced by these kinds of materials and their development trend are prospected, in order to provide reference for preparation of cellular piezoelectric polymer with better piezoelectricity and stability.
Key words:  piezoelectric polymer    piezoelectrets    cellular structure    piezoelectricity
               出版日期:  2021-04-10      发布日期:  2021-04-22
ZTFLH:  TB39  
基金资助: 辽宁省“兴辽英才计划”青年拔尖人才资助项目(XLYC1807007);沈阳市中青年科技创新人才项目(RC200415);辽宁省高等学校创新人才支持计划(LR2019054)
作者简介:  马驰,沈阳化工大学副教授,硕士研究生导师,2012年7月毕业于东北大学,入选辽宁省”兴辽英才”计划,辽宁省“百千万”人才工程。主要从事阻尼材料、压电材料和材料助剂方面的研究。近年来,在阻尼材料与压电材料发表论文30余篇。
引用本文:    
马驰, 王连慧, 潘崇祥, 刘紫婷, 王娜, 史颖. 泡孔聚合物压电材料的研究进展[J]. 材料导报, 2021, 35(7): 7199-7204.
MA Chi, WANG Lianhui, PAN Congxiang, LIU Ziting, WANG Na, SHI Ying. A Review on Cellular Piezoelectric Polymer. Materials Reports, 2021, 35(7): 7199-7204.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19100193  或          http://www.mater-rep.com/CN/Y2021/V35/I7/7199
1 Shi W L, Xing Z G, Wang H D, et al. Materials Reports A: Review Papers,2014, 28(2), 45(in Chinese).
石伟丽, 邢志国, 王海斗, 等.材料导报:综述篇, 2014, 28(2), 45.
2 Mohebbi A, Rodrigue D. Polymer Engineering and Science, 2018, 58(3), 300.
3 Yin Q Y, Tian C A, Hu S T, et al. Materials Reports B: Research Papers, 2017, 31(11), 26(in Chinese).
尹奇异, 田长安, 胡舒婷, 等.材料导报:研究篇, 2017, 31(11), 26.
4 Sun K X, Chang Y X, Cheng X F. Materials Reports B: Research Papers, 2019, 31(7), 2299(in Chinese).
孙科学, 常月欣, 成谢锋.材料导报:研究篇, 2019, 31(7), 2299.
5 Li H P, Zhu D H, Zhang D J. Materials Reports, 2010, 24(S1), 313(in Chinese).
李华萍, 朱德梅, 张栋杰.材料导报, 2010, 24(S1), 313.
6 Wang R J. Hydroacoustic material manual,Science Press,China, 1983(in Chinese).
王荣津.水声材料手册.科学出版社, 1983.
7 You Y M, Liao W Q, Zhao D W, et al. Science, 2017, 357(6348), 306.
8 Liao W Q, Zhao D, Tang Y Y, et al. Science, 2019, 363(6432), 1206.
9 Jahan N, Mighri F, Rodrigue D, et al. Journal of Applied Polymer Science, 2019, 136(20), 47540.
10 Liu S B, Cui Z, Liu M Y, et al. Applied Physics Letters, 2014, 104(17), 172906.
11 Li Y, Chu R Q, Li G R, et al. Materials Reports A: Review Papers, 2012, 26(1), 48(in Chinese).
李艳, 初瑞清, 李国荣, 等.材料导报:综述篇 , 2012, 26(1), 48.
12 Dong L J, Quan H Y, Xiong C X. Science and Technology of Overseas Building Materials, 2004, 25(4), 69(in Chinese).
董丽杰, 权红英, 熊传溪.国外建材科技, 2004, 25(4), 69.
13 Bauer S, Gerhard-Multhaupt R, Sessler G M. Physics Today, 2004, 57(2), 37.
14 Mellinger A, Wegener M, Wirges W, et al. Ferroelectrics, 2006, 331(1), 189.
15 Wegener M, Bauer S. Chemphyschem: a European Journal of Chemical Physics and Physical Chemistry, 2005, 6(6), 1014.
16 Sessler G M. Journal of Electrostatics, 2001, 51-52(1-4), 137.
17 Mohebbi A, Mighri F, Ajji A, et al. Advances in Polymer Technology, 2018, 37(2),468.
18 Qiu X L,Wirges W, Reimund G, et al. In: Conference Record of the 2016 IEEE International Conference on High Voltage Engineering and Application (ICHVE). Chengdu, 2016, pp. 1.
19 Mohebbi A, Mighri F, Ajji A, et al. Journal of Applied Polymer Science, 2017, 134(10), 44577.
20 Mohebbi A, Mighri F, Ajji A, et al. Polymers for Advanced Technologies, 2017, 28(4), 476.
21 Xue Y, Zhang X Q, Zheng J, et al. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 25(1), 228.
22 Pan D S, Zhang X Q, Wang X W, et al. Piezoelectrics and Acoustooptics, 2010, 32(3), 447(in Chinese).
潘道胜, 张晓青, 王学文, 等.压电与声光, 2010, 32(3), 447.
23 Ma X C, Zhang X Q, Fang P. Sensors and Actuators A: Physical, 2017, 256, 35.
24 Wu L M, Zhang X Q. Acta Physica Sinica, 2015, 64(17), 328(in Chinese).
武丽明, 张晓青.物理学报, 2015, 64(17), 328.
25 Hamdi O, Mighri F, Rodrigue D. Journal of Applied Polymer Science, 2019, 136, 47646.
26 Zhang P F, Xia Z F, Qiu X L, et al. In: Conference Record of the International Symposium on Electrets (ISE 12), 2005. Salvador, pp. 39.
27 Sborikas M, Ealo J L, Wegener M. Sensors and Actuators A:Physical, 2016, 245, 1.
28 Paajanen M, Lekkala J, Kirjavainen K. Sensors and Actuators A:Physical, 2000, 84(1-2), 95.
29 Wirges W, Wegener M, Voronina O, et al. Advanced Functional Mate-rials, 2007, 17(2), 324.
30 Wegener M, Wirges W, Gerhard-Multhaupt R. Advanced Engineering Materials, 2005, 7(12), 1128.
31 Wang Y C, Chen Y W. Experimental Thermal and Fluid Science, 2007, 32(2), 403.
32 Fang P, Qiu X L, Wirges W, et al. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17(4), 1079.
33 Yang G M, Sessler G M, Hatke W. In: Conference Record of the 10th International Symposium on Electrets, Athens, 1999, pp. 317.
34 Nunes P S, Ohlsson P D, Ordeig O, et al. Microfluidics and Nanoflui-dics, 2010, 9(2-3), 145.
35 Saarimaki E, Paajanen M, Savijarvi A, et al. IEEE Transactions on Dielectrics and Electrical Insulation, 2006, 13(5), 963.
36 Wegener M, Paajanen M, Voronina O, et al. In: Conference Record of the 12th International Symposium on Electrets, Salvador, 2005, pp. 47.
37 Li Y, Zeng C C. Macromolecular Chemistry and Physics, 2013, 214(23), 2733.
38 Wang H, Li Y, Zeng C C.In: Conference Record of the 2015 Procee-dings of SPE ANTEC, Orlando,2015.
39 Zhukov S, Eder-Goy D, Biethan C, et al. Smart Materials and Structures, 2017, 27(1), 015010.
40 Xia Z F, Wedel A, Danz R. IEEE transactions on dielectrics and electrical insulation, 2003, 10(1), 2.
41 Zhang X Q, Sessler G M, Xue Y, et al. Journal of Physics D: Applied Physics, 2016, 49(20), 205502.
42 Zhang X Q,Xia Z F, Qiu X L, et al. Journal of Sichuan University(Na-tural Science Edition), 2005(S1),29(in Chinese).
张晓青, 夏钟福, 邱勋林,等.四川大学学报(自然科学版), 2005(S1), 29.
[1] 秦红玲, 朱合法, 邢志国, 王海斗, 郭伟玲, 黄艳斐. 铁电膜层制备技术研究现状[J]. 材料导报, 2021, 35(1): 1112-1120.
[2] 杨路, 赵秋莹, 申明霞, 裘进浩. 二氧化锰纤维/聚偏氟乙烯复合材料薄膜的制备及压电性能[J]. 材料导报, 2020, 34(24): 24145-24149.
[3] 樊娇娇, 何新华, 符小艺, 陈丹玲. Na0.5Bi2.5Nb2O9-Na0.5Bi4.5Ti4O15材料的微观结构及电性能[J]. 材料导报, 2018, 32(22): 3839-3844.
[4] 尹奇异,田长安,胡舒婷,王成泽,王婷婷,阳杰,吉冬冬,刘洋. CeO2掺杂制备Ba0.9Ca0.1Ti1-xSnxO3压电陶瓷的结构及电性能[J]. 材料导报编辑部, 2017, 31(22): 26-29.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed