Please wait a minute...
CLDB  2017, Vol. 31 Issue (23): 58-65    https://doi.org/10.11896/j.issn.1005-023X.2017.023.007
  专题栏目:超高性能混凝土及其工程应用 |
钢纤维对超高性能混凝土干燥收缩的影响*
吴林妹1, 2, 史才军1, 张祖华1, 2, 王浩2
1 湖南大学土木工程学院,长沙 410082;
2 Centre for Future Materials, University of Southern Queensland,Toowoomba, QLD 4350, Australia
Effects of Steel Fiber on Drying Shrinkage of Ultra High Performance Concrete
WU Linmei1, 2, SHI Caijun1, ZHANG Zuhua1, 2, WANG Hao2
1 College of Civil Engineering, Hunan University, Changsha 410082;
2 Centre for Future Materials,University of Southern Queensland, Toowoomba, QLD 4350, Australia
下载: 
输出:  BibTeX | EndNote (RIS)      
摘要 研究了在(20±2) ℃、相对湿度为(50±5)%的环境中钢纤维体积掺量为0%、1%、2%和3%的超高性能混凝土(UHPC)的干燥收缩。结果表明: UHPC在前7 d的干燥收缩发展速率较快,7 d后发展速率逐渐减缓;但当钢纤维掺量超过2%后,钢纤维对干燥收缩的改善作用明显降低,相比钢纤维掺量为2%的UHPC,3%掺量UHPC的干燥收缩仅仅降低了1.5%。钢纤维高弹模及它与基体的界面粘结有效降低了混凝土的干燥收缩,但钢纤维掺量过多可导致多孔薄弱的界面区增加,从而使其对混凝土的收缩抑制作用减小。粉煤灰对超高性能混凝土干燥收缩的抑制作用大于矿粉。提出的新的数学拟合指数公式相比于文献中常用的ACI和王铁梦公式与实测结果吻合度更好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴林妹
史才军
张祖华
王浩
关键词:  超高性能混凝土  钢纤维  粉煤灰  矿粉  干燥收缩  数学拟合    
Abstract: This paper reports the study of the influence of steel fibers on drying shrinkage of ultra-high performance concrete (UHPC) at fiber volume content of 0%, 1%, 2% and 3%, temperature of (20 ± 2) ℃ and relative humidity of (50±5)%. The results showed that during the first 7 days, the drying shrinkage rate of UHPC was very fast, while after 7 days it gradually decreased. The interfacial bonding of steel fiber and the physical properties of steel fiber can effectively reduce the drying shrinkage. However, when the steel fiber exceeds an optimal volume, the effect of steel fiber on drying shrinkage can decrease. Compared with the steel fiber content at 2%, the drying shrinkage of the UHPC with 3% steel fiber was decreased by only 1.5%. The reason is that the increase in the steel fiber leads to an increase in the interface layer, the interface transition zone is usually more porous than the matrix, which easily leads to shrinkage, and consequently reducing the beneficial effect of steel fiber on drying shrinkage control. It was also found that the inhibition of fly ash on the drying shrinkage of UHPC was higher than slag. The experiment also tested the classic dry shrinkage models: the ACI model and the Wang Tiemeng model. Based on the two models and the experimental fitting, a new mathematical model (a combined index model) has been proposed. The results showed that the combined index model fitted better than the two models mentioned above.
Key words:  ultra-high performance concrete (UHPC)    steel fiber    fly ash    slag    drying shrinkage    mathematical model fitting
               出版日期:  2017-12-10      发布日期:  2018-05-08
ZTFLH:  TU528  
基金资助: *国家自然科学基金(U1305243); 湖南省研究生创新研究项目(CX2016B106)
通讯作者:  史才军:男,1963年生,教授,博士研究生导师,主要从事固体废弃物资源化利用、新能源材料和纳米材料等研究 E-mail:cshi@hnu.edu.cn   
作者简介:  吴林妹:女, 1987年生,博士研究生,研究方向为土木工程材料、结构工程 E-mail:linmeiwu@hnu.edu.cn
引用本文:    
吴林妹, 史才军, 张祖华, 王浩. 钢纤维对超高性能混凝土干燥收缩的影响*[J]. CLDB, 2017, 31(23): 58-65.
WU Linmei, SHI Caijun, ZHANG Zuhua, WANG Hao. Effects of Steel Fiber on Drying Shrinkage of Ultra High Performance Concrete. Materials Reports, 2017, 31(23): 58-65.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.023.007  或          http://www.mater-rep.com/CN/Y2017/V31/I23/58
1 Gilbert R I. Time effects in concrete structures[J]. Int J Cem Compos Lightweight Concr, 1989, 11(1):60.
2 Wu L, Farzadnia N, et al. Autogenous shrinkage of high performance concrete: A review[J]. Constr Build Mater, 2017,149:62.
3 Barr B, Hoseinian S, Beygi M. Shrinkage of concrete stored in natural environments[J]. Cem Concr Compos, 2003,25(1): 19.
4 Mindess S, Young J, Darwin D. Concrete. Upper saddle river, nj 07458[M]. Prentice Hall, Pearson Education, Inc. 2003.
5 Monteiro P. Concrete: Microstructure, properties, and materials[M]. McGraw-Hill Publishing, 2006.
6 Chern J C, Chan Y W. Deformations of concretes made with blast-furnace slag cement and ordinary portland cement[J]. ACI Mater J, 1989,86(4):372.
7 Khatri R, Sirivivatnanon V, Gross W. Effect of different supplementary cementitious materials on mechanical properties of high performance concrete[J]. Cem Concr Res, 1995,25(1):209.
8 Gao X J. Mechanism and assessment methods of early age cracking of high performance concrete[D]. Harbin: Harbin Institute of Technology, 2003(in Chinese).
高小建. 高性能混凝土早期开裂机理与评价方法[D]. 哈尔滨: 哈尔滨工业大学, 2003.
9 Qin H, Pan G, Sun W. Study on the deformation properties of the high performance concrete with fly ash used in bridge[J]. J Southeast University (Nat Sci Ed), 2002,32(5):779(in Chinese).
秦鸿根, 潘钢华, 孙伟. 掺粉煤灰高性能桥用混凝土变形性能研究[J]. 东南大学学报(自然科学版), 2002,32(5):779.
10 Cai A L, Li S K, Yan S, et al. Influence of curing temperature on drying shrinkage characterristics of portland cement mortar with high doping of fly ash[J]. J Chin Ceram Soc, 2005,33(1):100(in Chinese).
蔡安兰, 李顺凯, 严生, 等. 养护温度对高掺量粉煤灰硅酸盐水泥砂浆干缩性能的影响[J]. 硅酸盐学报, 2005,33(1): 100.
11 Bentz D P, Geiker M R, Hansen K K. Shrinkage-reducing admixtures and early-age desiccation in cement pastes and mortars[J]. Cem Concr Res, 2001,31(7):1075.
12 Rodden R, Lange D. Feasibility of shrinkage reducing admixtures for concrete runway pavements[R]. Technical Note, 2004.
13 Brooks J, Jiang X. The influence of chemical admixtures on restrained drying shrinkage of concrete[J]. Special Publication, 1997,173:249.
14 Folliard K J, Berke N S. Properties of high-performance concrete containing shrinkage-reducing admixture[J]. Cem Concr Res, 1997,27(9):1357.
15 Almudaiheem J A, Hansen W. Effect of specimen size and shape on drying shrinkage of concrete[J]. ACI Mater J, 1987,84(2):130.
16 Hansen W, Almudaiheem J A. Ultimate drying shrinkage of concrete-Influence of major parameters[J]. ACI Mater J, 1987,84(3):217.
17 ?elih J, Bremner T W. Drying of saturated lightweight concrete: An experimental investigation[J]. Mater Struct, 1996,29(7):401.
18 Blais P Y, Couture M. Precast, prestressed pedestrian bridge: World??s first reactive powder concrete structure[J]. PCI J, 1999,44(5):60.
19 Dauriac C. Special concrete may give steel stiff competition[N]. Seattle Daily J Commerce, 1997: 5.
20 Dowd W. Reactive powder concrete: Ultra-high performance cement based composite[C]∥Construction Innovation Forum. Uni-ted States, 1999.
21 Sprince A, Korjakins A, Pakrastinsh L, et al. Early age creep and shrinkage of high performance concrete[C]∥Ultra-High Perfor-mance Concrete and Nanotechnology in Construction Proceedings of Hipermat 2012 3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Mater. 2012:309.
22 Long Guangcheng, Chen Yu. Study on the effect of factors on strength and shrinkage of Rpc200 [J]. Ind Construction, 2002, 32(6):4(in Chinese).
龙广成, 陈瑜. Rpc200 的强度及收缩影响研究[J]. 工业建筑,2002,32(6):4.
23 Tam C M, Tam V W, Ng K M. Assessing drying shrinkage and water permeability of reactive powder concrete produced in hong kong[J]. Constr Build Mater, 2012,26(1):79.
24 Cwirzen A, Penttala V, Vornanen C. Reactive powder based concretes: Mechanical properties, durability and hybrid use with opc[J]. Cem Concr Res, 2008,38(10):1217.
25 Garas V Y, Kahn L F, Kurtis K E. Short-term tensile creep and shrinkage of ultra-high performance concrete[J]. Cem Concr Compos, 2009,31(3):147.
26 Li H Y. Effect of polyacrylic ester on the properties of reactive powder concrete[D]. Changsha: Central South University, 2007(in Chinese).
李会艳. 聚丙烯酸酯对活性粉末混凝土性能的影响研究[D]. 长沙:中南大学, 2007.
27 Wang D H, Shi C J, Wu L M. Reasearch and applocations of ultra-high performance concrete (UHPC) in China[J]. Bull Chin Ceram Soc, 2016,35(1):141(in Chinese).
王德辉, 史才军, 吴林妹. 超高性能混凝土在中国的研究和应用[J]. 硅酸盐通报, 2016,35(1):141.
28 Huang K, Deng M, Mo L, et al. Early age stability of concrete pavement by using hybrid fiber together with mgo expansion agent in high altitude locality[J]. Constr Build Mater, 2013,48: 685.
29 Miao B, Chern J C, Yang C A. Influences of fiber content on prope-rties of self-compacting steel fiber reinforced concrete[J]. J Chin Inst Eng, 2003,26(4):523.
30 Yoo D Y, Shin H O, Yang J M, et al. Material and bond properties of ultra high performance fiber reinforced concrete with micro steel fibers[J]. Composites Part B: Eng, 2014,58:122.
31 Wu X L. Study on prediction model of concrete strength and drying shrinkage[D].Beijing: China Academy of Building Research, 2008 (in Chinese).
吴学利. 混凝土强度和干燥收缩预测模型的研究[D]. 北京:中国建筑科学研究院, 2008.
32 Bazant Z P, Baweja S. Creep and shrinkage prediction model for analysis and design of concrete structures: Model b3[J]. ACI Special Publications, 2000,194:1.
33 Bangham D, Fakhoury N, Mohamed A. The swelling of charcoal. Part ii. Some factors controlling the expansion caused by water, benzene and pyridine vapours[J]. Proceedings of the Royal Society of London Series A, 1932,138(834):162.
34 Acker P, Behloul M. Ductal?? technology: A large spectrum of properties, a wide range of applications[C]∥Proc of the Int Symp on UHPC. Kassel, Germany, 2004.
35 Malhotra V. High-performance high-volume fly ash concrete[J]. Concr Int, 2002,24(7):30.
36 Jiang Z W, Sun Z P, Wang P M, et al. Study on self-desiccation effect of high performance concrete[J]. J Building Mater, 2004,7(1): 19(in Chinese).
蒋正武, 孙振平, 王培铭, 等. 高性能混凝土中自干燥效应的研究[J]. 建筑材料学报, 2004,7(1):19.
37 Mehta P K. Concrete structure, properties and materials[M].New Jersey:Prentice-Hall, 1986.
38 Mehta P K. High-performance, high-volume fly ash concrete for sustainable development[C]∥Proceedings of the International Workshop on Sustainable Development and Concrete Technology. USA, 2004.
39 Subramaniam K V, Gromotka R, Shah S P, et al. Influence of ultrafine fly ash on the early age response and the shrinkage cracking potential of concrete[J]. J Mater Civil Eng, 2005,17(1):45.
40 Gdoutos M K, Shah S, Dattatraya D. Relationships between engineering characteristics and material properties of high strength-high performance concrete[C]∥Role of Concrete In Sustainable Development: Proceedings of the International Symposium. Northwestern Dundee, Scotland, UK., 2003.
41 Tazawa E, Miyazawa S. Influence of constituents and composition on autogenous shrinkage of cementitious materials[J]. Mag Concr Res, 1997,49(178):15.
42 Cusson D, Hoogeveen T. Internal curing of high-performance concrete with pre-soaked fine lightweight aggregate for prevention of autogenous shrinkage cracking[J]. Cem Concr Res, 2008,38(6):757.
43 Ma D H, Shang J L, Li Z Y. Self-shrinkage high performance concrete[J]. J Xi??an University of Architecture & Technology(Natural Science Edition) 2003,35(1):82(in Chinese).
马冬花, 尚建丽, 李占印. 高性能混凝土的自收缩[J]. 西安建筑科技大学学报(自然科学版), 2003,35(1):82.
44 Li Y, Bao J, Guo Y. The relationship between autogenous shrinkage and pore structure of cement paste with mineral admixtures[J]. Constr Build Mater, 2010,24(10):1855.
45 Noushini A, Vessalas K, Arabian G, et al. Drying shrinkage behaviour of fibre reinforced concrete incorporating polyvinyl alcohol fibres and fly ash[J]. Adv Civil Eng, 2014,2014:356.
46 Wu Z, Shi C, Khayat K H. Influence of silica fume content on microstructure development and bond to steel fiber in ultra-high strength cement-based materials (uhsc)[J]. Cem Concr Compos, 2016,71:97.
47 Habel K, Viviani M, Denarié E, et al. Development of the mechanical properties of an ultra-high performance fiber reinforced concrete (uhpfrc)[J]. Cem Concr Res, 2006,36(7):1362.
48 Saje D, Saje F. Autogenous shrinkage development in HPC[C]∥International Conference on High Performance Materials in Bridges.Hawaii, 2003.
49 Turatsinze A, Farhat H, Granju J L. Influence of autogenous cracking on the durability of repairs by cement-based overlays reinforced with metal fibres[J]. Mater Struct, 2003,36(10):673.
[1] 赖榕永, 王温馨, 谢雯倩, 丁益民. MA-PA-SA/改性粉煤灰复合相变储能材料的制备与性能[J]. 材料导报, 2019, 33(z1): 219-222.
[2] 韩方玉, 刘建忠, 刘加平, 马骉, 沙建芳, 王兴龙. 基于超高性能混凝土的钢筋锚固性能研究[J]. 材料导报, 2019, 33(z1): 244-248.
[3] 邓恺, 黎红兵, 李响, 吴凯. 不同养护条件下钢渣与粉煤灰改性磷酸镁水泥的性能研究[J]. 材料导报, 2019, 33(z1): 264-268.
[4] 廖宜顺, 沈晴, 徐鹏飞, 廖国胜, 钟侚. 粉煤灰对水泥基材料水化过程电阻率的影响研究[J]. 材料导报, 2019, 33(8): 1335-1339.
[5] 张默, 王诗彧. 常温制备赤泥-低钙粉煤灰基地聚物的试验和微观研究[J]. 材料导报, 2019, 33(6): 980-985.
[6] 李海南, 马保国, 谭洪波, 梅军鹏. TiO2纳米颗粒对水泥-粉煤灰体系水化硬化及氯离子侵蚀的影响[J]. 材料导报, 2019, 33(4): 630-633.
[7] 高小建, 李双欣. 微波养护对掺矿渣超高性能混凝土力学性能的影响及机理[J]. 材料导报, 2019, 33(2): 271-276.
[8] 曹润倬, 周茗如, 周群, 何勇. 超细粉煤灰对超高性能混凝土流变性、力学性能及微观结构的影响[J]. 材料导报, 2019, 33(16): 2684-2689.
[9] 王义超, 余江滔, 魏琳卓, 徐世烺. 超高韧性氯氧镁水泥基复合材料的耐水性能[J]. 材料导报, 2019, 33(16): 2665-2670.
[10] 周昱程, 刘娟红, 纪洪广, 付士峰, 谷峪. 温度-复合盐耦合条件下纤维混凝土井壁冲击倾向性试验研究[J]. 材料导报, 2019, 33(16): 2671-2676.
[11] 苏英, 邱慧琼, 贺行洋, 杨进, 王迎斌, 曾三海, Bohumír Strnadel. 弱碱激发超细粉煤灰水化产物结构分析[J]. 材料导报, 2019, 33(14): 2376-2380.
[12] 张翔, 甘春雷, 黎小辉, 张辉, 郑开宏, 农登. 氧化铝纤维含量对陶瓷基摩擦材料性能的影响[J]. 材料导报, 2018, 32(20): 3517-3523.
[13] 王德辉, 史才军, 贾煌飞. 石灰石粉和含铝相辅助性胶凝材料的协同作用对混凝土抗碳化性能的影响[J]. 材料导报, 2018, 32(17): 2986-2991.
[14] 李革, 徐泽华, 牛建刚. 塑钢纤维轻骨料混凝土细观破坏过程的数值模拟[J]. 《材料导报》期刊社, 2018, 32(14): 2412-2417.
[15] 白光,田义,余林文,王磊. 聚乙烯醇纤维对碱矿渣泡沫混凝土性能的影响[J]. 《材料导报》期刊社, 2018, 32(12): 2096-2099.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed