Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (12): 2096-2099    https://doi.org/10.11896/j.issn.1005-023X.2018.12.029
  材料研究 |
聚乙烯醇纤维对碱矿渣泡沫混凝土性能的影响
白光1,田义1,余林文1,王磊2
1 重庆大学材料科学与工程学院,重庆 400045;
2 武汉市建筑节能办公室,武汉 430015
Effect of PVA Fiber on the Properties of Alkali Activated Slag Foam Concrete
BAI Guang1, TIAN Yi1, YU Linwen1, WANG Lei2
1 College of Materials Science and Engineering, Chongqing University, Chongqing 400045;
2 Wuhan Building Energy Efficiency Test Center, Wuhan 430015
下载:  全 文 ( PDF ) ( 1097KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以水玻璃为激发剂,制备干密度为350 kg/m3的碱矿渣泡沫混凝土,为提高碱矿渣泡沫混凝土的韧性,降低干燥收缩,本工作研究了聚乙烯醇(PVA)纤维对碱矿渣泡沫混凝土干密度、强度、折压比、吸水率和干燥收缩性能的影响。结果表明:PVA纤维对碱矿渣泡沫混凝土干密度无明显影响;PVA纤维掺量为0.6~1.2 kg/m3时,碱矿渣泡沫混凝土的抗折强度和折压比明显增加,韧性得到明显改善;碱矿渣泡沫混凝土吸水率也低于未掺纤维的泡沫混凝土;PVA纤维掺量大于0.6 kg/m3时,碱矿渣泡沫混凝土的干燥收缩显著降低;综合碱矿渣泡沫混凝土性能及经济性等因素,碱矿渣泡沫混凝土中PVA纤维最优掺量为0.6 kg/m3。    
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
白光
田义
余林文
王磊
关键词:  碱矿渣  泡沫混凝土  聚乙烯醇纤维  强度  干燥收缩    
Abstract: Alkali activated slag (AAS) foam concrete with dry density of 350 kg/m3 was prepared with water glass activated slag cement. To increase the toughness and decrease the drying shrinkage of AAS foam concrete, the effect of polyvinyl alcohol (PVA) fiber content on the dry density, strength, water absorption and drying shrinkage of AAS foam concrete were tested in this paper. The results indicated that PVA fiber had little influence on the dry density of AAS foam concrete. When the PVA fiber content ranged between 0.6—1.2 kg/m3, it increased the flexural strength and flexural-compressive ratio of AAS foam concrete,which mean the toughness of AAS foam concrete increased. Adding PVA fiber decreased the water absorption rate of AAS foam concrete. When the PVA fiber content was higher than 0.6 kg/m3, the drying shrinkage of AAS foam concrete decreased with the increase of fiber content. Considering the properties of AAS foam concrete and economic efficiency in this research condition, the optimal content of PVA fiber in AAS foam concrete was 0.6 kg/m3.
Key words:  alkali activated slag    foam concrete    polyvinyl alcohol fiber    strength    drying shrinkage
               出版日期:  2018-06-25      发布日期:  2018-07-20
ZTFLH:  TU52  
基金资助: 十三五国家重点研发计划(2017YFB0309905),国家自然科学基金(51778089;51708060)
作者简介:  白光:男,1959年生,工程师,主要从事建筑保温材料及建筑材料耐久性研究 E-mail:bg1686@126.com
引用本文:    
白光,田义,余林文,王磊. 聚乙烯醇纤维对碱矿渣泡沫混凝土性能的影响[J]. 《材料导报》期刊社, 2018, 32(12): 2096-2099.
BAI Guang, TIAN Yi, YU Linwen, WANG Lei. Effect of PVA Fiber on the Properties of Alkali Activated Slag Foam Concrete. Materials Reports, 2018, 32(12): 2096-2099.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.12.029  或          http://www.mater-rep.com/CN/Y2018/V32/I12/2096
1 Lei Dongyi, Guo Liping, Liu Jiaping, et al. State of study and application of foamed concrete[J]. Journal of Functional Materials,2017,48(11):11037(in Chinese).
雷东移,郭丽萍,刘加平,等.泡沫混凝土的研究与应用现状[J].功能材料,2017,48(11):11037.
2 Hu Yanjun, Su Zhenguo, Yang Jinlong. Research status and application of external wall thermal insulation materials[J]. Materials Review,2012,26(z2):290(in Chinese).
胡验君,苏振国,杨金龙.建筑外墙外保温材料的研究与应用[J].材料导报,2012,26(专辑20):290.
3 Li Meng, Huang Yinsheng, Zhang Shaobo, et al. Development of research and prospect on foam concrete[J]. Materials Review,2016,30(z2):402(in Chinese).
李猛,黄寅生,张少波,等.泡沫混凝土的研究进展及展望[J].材料导报,2016,30(专辑27):402.
4 Amran Y H M, Farzadnia N, Ali A A A. Properties and applications of foamed concrete:A review[J]. Construction and Building Materials,2015,101:990.
5 Yang Changhui, Wang Lei, et al. Fundamental characteristics of alkali activated slag cement foam concrete[J]. Bulletin of the Chinese Ceramic Society,2016,35(2):555(in Chinese).
杨长辉,王磊,等.碱矿渣泡沫混凝土性能研究[J].硅酸盐通报,2016,35(2):555.
6 Hajimohammadi A, Ngo T, Mendis P, et al. Alkali activated slag foams: The effect of the alkali reaction on foam characteristics[J]. Journal of Cleaner Production,2017,147:330.
7 Yang K H, Lee K H, Song J K, et al. Properties and sustainability of alkali-activated slag foamed concrete[J]. Journal of Cleaner Production,2014,68(2):226.
8 Li Weimin, Xu Jinyu. Strengthening and toughening in basalt fiber-reinforced concrete[J]. Journal of the Chinese Ceramic Society,2008,36(4):476(in Chinese).
李为民,许金余.玄武岩纤维对混凝土的增强和增韧效应[J].硅酸盐学报,2008,36(4):476.
9 Zhao Guofan. Development and applications of concrete and its reinforcing materials[J]. Journal of Building Materials,2000,3(1):8(in Chinese).
赵国藩.混凝土及其增强材料的发展与应用[J].建筑材料学报,2000,3(1):8.
10 Ibrahim M H W,Jamaluddin N,Irwan J M, et al. Compressive and flexural strength of foamed concrete containing polyolefin fibers[J]. Advanced Materials Research,2014,9(11):489.
11 Thong C C, Teo D C L,Ng C K. Application of polyvinyl alcohol (PVA) in cement-based composite materials: A review of its engineering properties and microstructure behavior[J]. Construction and Building Materials,2016,107:172.
12 Allahverdi A, Kianpur K,Moghbeli M R. Effect of polyvinyl alcohol on flexural strength and some important physical properties of Portland cement paste[J]. Iranan Journal of Materials Science & Engineering,2010,7(1):1.
13 Xu F, Deng X, Peng C, et al. Mix design and flexural toughness of PVA fiber reinforced fly ash-geopolymer composites[J]. Construction & Building Materials,2017,150:179.
14 Zhang Y, Sun W, Li Z,et al. Impact properties of geopolymer based extrudates incorporated with fly ash and PVA short fiber[J]. Construction and Building Materials,2008,22(3):370.
15 Hu W, Yang X, Zhou J, et al. Experimental research on the mechanical properties of pva fiber reinforced concrete[J]. Research Journal of Applied Sciences Engineering & Technology,2013,5(18):4563.
16 Kim J H, Robertson R E,Naaman A E. Structure and properties of poly(vinyl alcohol)-modified mortar and concrete[J]. Cement and Concrete Research,1999,29(3):407.
17 Li Yingquan, Zhu Lide, et al. Study on mix ratio design of foamed concrete[J]. Journal of Xuzhou Institute of Technology(Natural Sciences Edition),2011,26(2):1(in Chinese).
李应权,朱立德,等.泡沫混凝土配合比的设计[J].徐州工程学院学报(自然科学版),2011,26(2):1.
18 Wang S, Li V C. Polyvinyl alcohol fiber reinforced engineered cementitious composites: Material design and performances[C]// Proceeding of RILEM Workshop on HPFRCC Structural Applications. Honolulu, Hawai’i,2015:65.
19 Huang Zhengyu, Sun Qingfeng, Zhou Zhimin. Study on pore structure and properties of ultra-light foam concrete made with OPC-SAC mixture[J]. Bulletin of the Chinese Ceramic Society,2013,32(9):1894(in Chinese).
黄政宇,孙庆丰,周志敏.硅酸盐-硫铝酸盐水泥超轻泡沫混凝土孔结构及性能研究[J].硅酸盐通报,2013,32(9):1894.
[1] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[2] 候昱灼, 廖洪强, 高宏宇, 程芳琴. 不同条件下聚苯颗粒泡沫混凝土的发泡过程及发泡体性能研究[J]. 材料导报, 2019, 33(z1): 234-238.
[3] 张景卫, 李地红, 高群, 于海洋, 代函函. 橡胶形态及分布对水泥制品抗冲击能力的影响[J]. 材料导报, 2019, 33(z1): 261-263.
[4] 兰明章, 聂松, 王剑锋, 张巧伟, 陈智丰. 古建筑修复用石灰基砂浆的研究进展[J]. 材料导报, 2019, 33(9): 1512-1516.
[5] 兰军, 刘乔, 陈重一. 一步法制备高强度自修复聚丙烯酸/聚烯丙基胺聚电解质水凝胶及其性能研究[J]. 材料导报, 2019, 33(8): 1412-1415.
[6] 邱博, 邢书明, 董琦. 颗粒增强金属基复合材料界面结合强度的表征:理论模型、有限元模拟和实验测试[J]. 材料导报, 2019, 33(5): 862-870.
[7] 刘从振, 范英儒, 王磊, 黄永波, 钱觉时. 聚羧酸减水剂对硫铝酸盐水泥水化及硬化的影响[J]. 材料导报, 2019, 33(4): 625-629.
[8] 郭景锋, 曹铁山, 程从前, 王富岗, 孟宪明, 赵杰. 氧化对Cr25Ni35Nb与Cr35Ni45Nb合金组织和磁性的影响[J]. 材料导报, 2019, 33(4): 650-653.
[9] 潘清, 陈婷, 潘锐之, 刘宝, 李东旭. 复掺硅灰的硫酸钙晶须改性水泥基复合材料的力学性能与微观结构[J]. 材料导报, 2019, 33(2): 257-263.
[10] 曹润倬, 周茗如, 周群, 何勇. 超细粉煤灰对超高性能混凝土流变性、力学性能及微观结构的影响[J]. 材料导报, 2019, 33(16): 2684-2689.
[11] 都蓉蓉, 张雄, 顾明东, 季涛. 聚羧酸减水剂与增强组分的复合效应及原理[J]. 材料导报, 2019, 33(14): 2461-2466.
[12] 刘钊, 王纪孝, 孙亚伟. 硫酸掺杂聚苯胺涂层的快速表面光热杀菌性能[J]. 材料导报, 2019, 33(14): 2431-2435.
[13] 杨凯, 张之璐, 杨永, 韩昊, 黄文聪, 朱效宏, 唐德莎, 李爽, 杨长辉. 复合激发剂对碱矿渣胶结材水化进程及早期性能的影响[J]. 材料导报, 2019, 33(14): 2326-2330.
[14] 周淑千, 徐卫兵, 周然, 周正发, 马海红, 任凤梅. P(AN-co-MA-co-MMA)@H2O微胶囊/密胺高阻燃泡沫的制备及性能[J]. 材料导报, 2019, 33(12): 2095-2099.
[15] 张建龙, 薛河, 鲁元. Super304H/T92奥氏体耐热钢摩擦焊焊接接头持久强度及断裂行为[J]. 材料导报, 2019, 33(12): 2067-2070.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed