Please wait a minute...
材料导报  2021, Vol. 35 Issue (22): 22045-22050    https://doi.org/10.11896/cldb.20070281
  无机非金属及其复合材料 |
硅烷复合乳液对水泥砂浆干燥收缩性能及力学性能的影响
徐士林1, 李绍纯2,3, 耿永娟2,3, 张友来4, 陈旭5, 许绍宸1
1 青岛理工大学土木工程学院,青岛 266033
2 山东省蓝色经济区工程建设与安全协同创新中心,青岛 266033
3 山东省海洋环境混凝土材料腐蚀控制与检测研究创新团队,青岛 266033
4 中建西部建设山东有限公司,青岛 266033
5 中建西部建设新疆有限公司,乌鲁木齐 830000
Influence of Silane Composite Emulsion on Drying Shrinkage and Mechanical Properties of Cement Mortar
XU Shilin1, LI Shaochun2,3, GENG Yongjuan2,3, ZHANG Youlai4, CHEN Xu5, XU Shaochen1
1 School of Civil Engineering, Qingdao University of Technological, Qingdao 266033, China
2 Cooperative Innovation Center of Engineering Construction and Safety in Shandong Blue Economic Zone, Qingdao 266033, China
3 Marine Environment Concrete Material Corrosion Control and Monitoring Research and Innovation Team, Qingdao 266033, China
4 China West Construction Group Co.,Ltd., Qingdao 266033, China
5 China West Construction Group Co.,Ltd.,Wulumuqi 830000, China
下载:  全 文 ( PDF ) ( 4339KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 将氧化石墨烯/异丁基三乙氧基硅烷复合乳液(GO/IBTS复合乳液)和正硅酸四乙酯/异丁基三乙氧基硅烷复合乳液(TEOS/IBTS复合乳液)分别内掺到水泥砂浆中,研究了两种硅烷复合乳液在不同掺量下对砂浆在养护过程中的干燥收缩性能、水分散失和力学性能的影响。研究结果表明:GO/IBTS复合乳液能有效抑制砂浆的干燥收缩和水分散失,当掺量为2%时,砂浆干燥收缩量和水分散失量达到最小,而且力学强度达到平均最高;TEOS/IBTS复合乳液对砂浆干燥收缩和水分散失的抑制作用不明显,但是当掺量为2%时,力学性能达到最大,抗压强度和抗折强度分别提高了5%和17%;但两种硅烷复合乳液掺量不宜超过水泥质量的3%。通过SEM、EDS测试发现,GO/IBTS复合乳液会在砂浆内部形成一层分散均匀的絮状结构。另外,红外光谱测试结果表明,硅烷复合乳液通过化学键与水泥基材料相结合。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐士林
李绍纯
耿永娟
张友来
陈旭
许绍宸
关键词:  硅烷复合乳液  水泥砂浆  干燥收缩  水分散失  力学性能    
Abstract: Graphene oxide/isobutyltriethoxysilane composite emulsion (GO/IBTS composite emulsion) and tetraethoxysilane/isobutyltriethoxysilane composite emulsion (TEOS/IBTS composite emulsion) are two new silane composite emulsion. The effects of the addition of two silane composite emulsions on the properties of cementitious mortar formulations with different dosage were studied. Drying shrinkage and water loss of hardening mortars during dry curing conditions and the mechanical properties of hardened mortars were measured in order to investigate the impact of silane composite emulsion on the properties of mortars. It was found that GO/IBTS composite emulsion could effectively inhibit the drying shrinkage and water loss of mortars. The drying shrinkage and water loss of mortars reached the minimum when the GO/IBTS composite emulsion content was 2%, and the mechanical strength reaches the highest average. TEOS/IBTS composite emulsion has no obvious inhibitory effect on mortar drying shrinkage and water loss. However, when the content is 2%, the mechanical properties reach the maximum, and the compressive strength and flexural strength increase by 5% and 17% respectively. The content of two silane composite emulsions should not exceed 3% of cement quality. SEM and EDS tests showed that GO/IBTS composite emulsion formed a dispersed and uniform flocculent structure inside the mortar. In addition, the infrared spectroscopy test results also showed that the silane composite emulsion has been combined with the mortar through chemical bonding.
Key words:  silane composite emulsion    cement mortar    drying shrinkage    water loss    mechanical property
出版日期:  2021-11-25      发布日期:  2021-12-13
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51778308;51978355);江苏省土木工程材料重点实验室开放基金(CM2016-04;CM2016-06);山东省蓝色经济区工程建设与安全协同创新中心开放基金
通讯作者:  lishaochun@qut.edu.cn   
作者简介:  徐士林,青岛理工大学,硕士研究生,主要从事复合硅烷材料对混凝土抗裂性能影响研究。
李绍纯,青岛理工大学土木工程学院教授,2008年获浙江大学材料科学与工程专业博士学位。山东省优秀青年创新团队带头人,新疆维吾尔自治区高层次人才,中国硅酸盐学会溶胶凝胶分会理事,山东省建筑学会理事。发表学术论文60余篇,其中SCI、EI收录39篇,授权国家发明专利9项,PCT专利3项,获教育部科技进步二等奖、山东省科技进步二等奖、新疆维吾尔自治区科技进步三等奖、青岛市科技进步二等奖等科研奖励。目前主要从事海洋环境下高性能混凝土的制备及耐久性研究,具体研究方向为混凝土表层防护技术以及海洋环境下混凝土结构耐久性评估体系。近年来,通过溶胶-凝胶法研发了氧化石墨烯/硅烷、纳米SiO2溶胶/硅烷等系列复合材料,并将其应用于海洋环境下水泥基材料表面微观结构优化及表面性能强化等方面,研究了各种涂层对海洋环境下混凝土结构耐久性能、抗生物腐蚀性能的影响,并取得了良好的效果。主持了国家自然科学基金、高性能土木工程材料国家重点实验室开放基金项目、硅酸盐建筑材料国家重点实验室开放基金等课题,参与了“973”项目、国家自然科学基金国际合作重点项目、铁道部科技计划项目等国家级重点课题,相关成果应用于胶州湾海底隧道、青岛地铁、青连铁路、青荣高速等海洋重大工程项目。
引用本文:    
徐士林, 李绍纯, 耿永娟, 张友来, 陈旭, 许绍宸. 硅烷复合乳液对水泥砂浆干燥收缩性能及力学性能的影响[J]. 材料导报, 2021, 35(22): 22045-22050.
XU Shilin, LI Shaochun, GENG Yongjuan, ZHANG Youlai, CHEN Xu, XU Shaochen. Influence of Silane Composite Emulsion on Drying Shrinkage and Mechanical Properties of Cement Mortar. Materials Reports, 2021, 35(22): 22045-22050.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070281  或          http://www.mater-rep.com/CN/Y2021/V35/I22/22045
1 Liu X, Guo Y C, Wang X, et al. Bulletin of the Chinese Ceramic Society, 2018,37(7),2173(in Chinese).
刘雪, 郭远臣, 王雪, 等. 硅酸盐通报, 2018,37(7),2173.
2 Wittmann F H. Cement and Concrete Research, 1976,6(1),49.
3 Amanda A. PCI Magazine, 2015,9(1),65.
4 Chen X, Li S C, Lu X, et al. Concrete, 2019(1),150(in Chinese).
陈旭, 李绍纯, 卢霄, 等. 混凝土, 2019(1),150.
5 Tian L, Feng Y X, Wang P G, et al. China Concrete and Cement Pro-ducts, 2016(12),20(in Chinese).
田砾, 封云旭, 王鹏刚, 等. 混凝土与水泥制品, 2016(12),20.
6 Feng H J, Le H, Wang S S, et al. Construction and Building Materials, 2016,129,48.
7 Wang D, Li J Y, Zhao W J. China Elastomerics, 2019,29(6),46(in Chinese).
王冬, 李金瑶, 赵文杰. 弹性体, 2019,29(6),46.
8 Kong X M, Liu H, Lu Z B, et al. Cement and Concrete Research, 2015,67,168.
9 Yuan X Y, Peng Y H, Sun L T, et al. Materials Reports B: Research Papers, 2020,34(6),6075(in Chinese).
袁小亚,彭一豪,孙立涛,等. 材料导报:研究篇,2020,34(6),6075.
10 D'Alessandro A, Corr D J Shah S P.ACI Materials Journal,2019,116(6).
11 Xu P H, Li X G, Liu Z L, et al. Bulletin of the Chinese Ceramic Society, 2016,35(12),4066(in Chinese).
徐朋辉, 李相国, 刘卓霖, 等. 硅酸盐通报, 2016,35(12),4066.
12 Xu Y D, Zeng J Q, Chen W, et al. Materials Reports A: Review Papers, 2017,31(23),150(in Chinese).
徐亦冬, 曾鞠庆, 陈伟,等. 材料导报:综述篇,2017,31(23),150.
13 Casagrande C A, Jochem L F, Onghero L, et al. Journal of Building Engineering, 2020,29,101226.
14 GAO Y. Influences of TEOS surface-treatment agent on the properties of cement-based materials.Master's Thesis, Shandong University, China, 2018(in Chinese).
高莹. 基于TEOS的表层防护剂对水泥基材料性能影响研究.硕士学位论文,山东大学,2018.
15 Fernández A M, Varela M T, Quiroga P M. Cement and Concrete Composites, 2018,95,271.
16 Zhang Y L. Preparation of graphene oxide/saline composite emulsion and its effect on durability of concrete. Master's Thesis, Qingdao University of Technology, 2018(in Chinese).
张友来. 氧化石墨烯/硅烷复合乳液的制备及其对混凝土耐久性能的影响研究.硕士学位论文,青岛理工大学,2018.
17 Chen X. Preparation of TEOS/isobutyltriethoxysilane compound emulsion and its effect on the properties of cement based material durability. Master's Thesis, Qingdao University of Technology, 2016(in Chinese).
陈旭. TEOS/异丁基三乙氧基硅烷复合乳液的制备及其对水泥基材料耐久性能的影响.硕士学位论文,青岛理工大学,2016.
18 Li K. The experimental research on the performance of concrete that with saline. Master's Thesis, Beijing University of Technology, 2011(in Chinese).
李凯. 内掺硅烷对混凝土性能影响的试验研究.硕士学位论文,北京工业大学,2011.
19 Lyu S H, Luo X Q, Zhang J, et al. Materials Reports B: Research Papers, 2017,31(24),10(in Chinese).
吕生华, 罗潇倩, 张佳, 等. 材料导报:研究篇,2017,31(24),10.
20 Wang Y X, Chai J R, Cao J, et al. Chinese Journal of Applied Mecha-nics, 2020,37(2),860(in Chinese).
王奕璇,柴军瑞,曹 靖, 等. 应用力学学报, 2020,37(2),860.
21 Zhang P, Zhao T J, Jin Z Q, et al. New Building Materials, 2009,36(3),62(in Chinese).
张鹏, 赵铁军, 金祖权, 等. 新型建筑材料, 2009,36(3),62.
22 Zhang C, Li S C, Zhao T J, et al. Concrete, 2016(7),130(in Chinese).
张翠, 李绍纯, 赵铁军, 等. 混凝土, 2016(7),130.
23 Li H X, Xu C, Dong B Q, Chen Q, et al. Construction and Building Materials, 2020,246,118511.
[1] 马新, 邱海鹏, 梁艳媛, 刘善华, 王晓猛, 赵禹良, 陈明伟, 谢巍杰. CVD BN界面层对Si3N4/SiBN复合材料弯曲性能的影响[J]. 材料导报, 2021, 35(z2): 86-89.
[2] 杨柯楠, 金珊珊. 水泥乳化沥青砂浆性能研究现状[J]. 材料导报, 2021, 35(z2): 145-149.
[3] 李凯雯, 刘娟红, 张超, 段品佳, 张博超. 超低温及低温循环对混凝土材料性能的影响[J]. 材料导报, 2021, 35(z2): 183-187.
[4] 刘甲, 徐家磊, 马照伟, 雷小伟, 高奇, 崔永杰. 钛合金等离子和MIG复合焊接技术研究[J]. 材料导报, 2021, 35(z2): 358-360.
[5] 袁碧亮, 李传强, 董勇, 张鹏. 增材制造AlxCoCrFeNi系高熵合金的研究进展[J]. 材料导报, 2021, 35(z2): 417-423.
[6] 曹鹏, 雷高峰, 苏成明, 舒林森, 石舒婷, 贾北北, 田伟红. 不同送料工艺对液压支架激光熔覆再制造的影响[J]. 材料导报, 2021, 35(z2): 424-427.
[7] 沈楚, 冯庆, 王思琦, 杨勃, 何秀玲, 李博, 苗东, 朱许刚. 退火温度对旋压工业纯钛TA1组织演变与力学性能的影响[J]. 材料导报, 2021, 35(z2): 452-455.
[8] 胡捷, 程仁菊, 李上民, 谭磊, 李春雨, 刘运, 宋洁, 杨明波. Y对Mg-10Gd-xY-1Zn-0.5Zr(x=1,2)镁合金铸态显微组织和力学性能的影响[J]. 材料导报, 2021, 35(z2): 456-459.
[9] 李崇智, 孙浩, 叶国林, 张艺劼. 酸化拟薄水铝石改性镍钢渣复合掺合料的效果研究[J]. 材料导报, 2021, 35(z2): 460-464.
[10] 廖明义, 王文恒, 王旭, 张春庆. 无规溶聚苯乙烯/丁二烯橡胶的负离子法合成、微观结构和性能[J]. 材料导报, 2021, 35(z2): 465-469.
[11] 罗锐祺, 刘勇琼, 廖英强, 周剑. 碳纤维增强环氧树脂复合材料力学性能影响因素的研究进展[J]. 材料导报, 2021, 35(z2): 558-563.
[12] 杨康, 张子傲, 杨丽, 耿昊, 丁一宁. 泡沫夹芯厚度对碳纤维复合材料夹层板冲击性能的影响[J]. 材料导报, 2021, 35(z2): 579-582.
[13] 冯雨琛, 李地红, 卞立波, 李紫轩, 张亚晴. 芳纶纤维增强水泥基复合材料力学性能与冲击性能研究[J]. 材料导报, 2021, 35(z2): 634-637.
[14] 刘宝友, 岳新艳, 冯东, 茹红强, 刘春明. 碳含量对无压烧结碳化硅陶瓷的显微组织和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 169-171.
[15] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed