Please wait a minute...
材料导报  2021, Vol. 35 Issue (19): 19134-19141    https://doi.org/10.11896/cldb.20040174
  金属与金属基复合材料 |
金属镁的氧化及氧化机理研究进展
明玥1,2, 游国强1,3, 姚繁锦1, 曾升1, 赵建华1,3, 李卫荣4
1 重庆大学材料科学与工程学院,重庆 400044
2 隆德大学材料工程系,隆德 22363
3 国家镁合金材料工程技术研究中心,重庆 400044
4 东莞宜安科技股份有限公司,东莞 523662
Research Progress on Oxidation and Oxidation Mechanism of Magnesium
MING Yue1,2, YOU Guoqiang1,3, YAO Fanjin1, ZENG Sheng1, ZHAO Jianhua1,3, LI Weirong4
1 College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
2 Division of Materials Engineering, Lund University, Lund 22363, Sweden
3 National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China
4 Dongguan Eontec Co., Ltd., Dongguan 523662, China
下载:  全 文 ( PDF ) ( 3103KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 镁合金作为目前最轻的商用金属结构材料,在航空航天、汽车、3C产品等领域具有广泛的应用前景。同时,面对全球铁铝资源日趋紧缺和我国大量进口铁铝矿石的困境,推广应用镁合金材料具有重要的战略意义。
与常用的钢铁材料和铝合金相比,镁合金的研究与开发还不充分,应用也受限。镁合金的耐腐蚀性能差,部分原因是镁的化学活性高,且表面生成的保护膜不具备保护作用。尤其在高温下,镁及其合金极易氧化,甚至燃烧,释放大量的热,这成为限制镁合金大量推广应用的瓶颈之一。
针对镁及其合金极易氧化的问题,近年来研究学者围绕其氧化机制和影响因素开展了大量的研究,认为镁合金的氧化受氧化膜P-B值、镁的蒸发、扩散等因素影响。目前,大多通过合金化的方式来提高镁的抗氧化性。镁合金抗氧化性研究为高抗氧化性镁合金的研发提供了理论支持,同时扩大了镁合金的高温应用前景,并将为镁合金行业带来巨大的经济效益。
本文归纳总结了国内外镁及其合金氧化特征及氧化机理的研究进展。首先,简述了镁的氧化;然后,分析了镁氧化的机理和影响因素,重点讨论了P-B值、扩散、蒸发、金相组织、合金元素对镁及其合金氧化行为的影响规律及作用机理;最后,总结了目前研究中的不足,提出了镁抗氧化性研究方向的建议。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
明玥
游国强
姚繁锦
曾升
赵建华
李卫荣
关键词:  镁合金  氧化特征  氧化机理  合金元素    
Abstract: As the lightest commercial metal structure material, magnesium alloy shows a wide application prospect in aerospace, automobile, 3C pro-ducts and other fields. At the same time, it is of great strategic significance to promote the application of magnesium alloy materials, in the face of the increasing shortage of iron and aluminum resources in the world and the dilemma of a large number of imported iron and aluminum ores.
Compared with common steel and aluminum alloy, the research and development of magnesium alloy are not enough, and its application is also limited. The poor corrosion resistance of magnesium alloy is partly due to the high chemical activity of magnesium and the lack of protective effect of the film formed on the surface. Especially at high temperature, magnesium and its alloys are easy to oxidize, even burn, and release a lot of heat, which has become one of the bottlenecks limiting the extensive application of magnesium alloys.
In recent years, a lot of researches have been carried out on the oxidation mechanism and influencing factors of magnesium and its alloys. It is considered that the oxidation of magnesium alloy is affected by factors, such as P-B value of oxide film, evaporation and diffusion of magnesium and so on. At present, the oxidation resistance of magnesium is improved by alloying. This provides theoretical support for the preparation of magnesium alloy with high oxidation resistance. At the same time, it expands the application prospect of magnesium alloy at high temperature, and will bring huge economic benefits to magnesium alloy industry.
This paper summarizes the research progress of oxidation characteristics and mechanism of magnesium and its alloys at home and abroad. Firstly, the oxidation of magnesium is briefly introduced. Secondly, the mechanism and influencing factors of magnesium oxidation are analyzed, and the influence rules and mechanism of P-B value, diffusion, evaporation, microstructure and alloy elements on the oxidation behavior of magnesium are emphatically discussed. Finally, the shortcomings of the current research are summarized, and suggestions on the research direction of magnesium oxidation resistance are put forward.
Key words:  magnesium alloy    oxidation characteristics    oxidation mechanisms    alloying element
               出版日期:  2021-10-10      发布日期:  2021-11-03
ZTFLH:  TB31  
基金资助: 东莞市核心技术攻关重点项目(2019622134013);重庆大学大型仪器设备开放基金(201903150016;202003150150)
通讯作者:  ygq@cqu.edu.cn   
作者简介:  明玥,2016年6月毕业与重庆大学,获得硕士学位。现为重庆大学材料科学与工程学院博士。2020—2021年公派隆德大学进行联合培养。目前主要研究领域为镁合金氧化腐蚀机理。
游国强,重庆大学材料科学与工程学院副教授,博士研究生导师。2007年6月在重庆大学取得博士学位。2014—2015年在澳大利亚昆士兰大学访学。现为国家镁合金材料工程技术研究中心研究骨干,全国铸造标准化技术委员会委员,现金铸造重庆市工程实验室副主任,中国机械工程学位铸造分会第十届复合材料技术委员会委员。长期从事高性能镁合金机器成型技术研究,并取得了大量创新型的研究成果,在相关领域发表论文60余篇。
引用本文:    
明玥, 游国强, 姚繁锦, 曾升, 赵建华, 李卫荣. 金属镁的氧化及氧化机理研究进展[J]. 材料导报, 2021, 35(19): 19134-19141.
MING Yue, YOU Guoqiang, YAO Fanjin, ZENG Sheng, ZHAO Jianhua, LI Weirong. Research Progress on Oxidation and Oxidation Mechanism of Magnesium. Materials Reports, 2021, 35(19): 19134-19141.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040174  或          http://www.mater-rep.com/CN/Y2021/V35/I19/19134
1 Ding W J. Magnesium alloy science and technology, Science Press, China, 2007(in Chinese).
丁文江.镁合金科学与技术, 科学出版社, 2007.
2 Ming Y. Study on the process of magnesium alloy crankcase right cover of motorcycle. Master's Thesis, Chongqing University, 2016(in Chinese).
明玥. 摩托车镁合金曲轴箱右盖的工艺研究.硕士学位论文,重庆大学, 2016.
3 Zhang M J. The research on microstmctures,corrosion properties and high temperature oxidation behavior of Mg-A1-Ca-Mn alloys. Master's Thesis, Hunan University, China, 2016(in Chinese).
张孟军. Mg-A1-Ca-Mn 合金的显微组及高温氧化行为研究.硕士学位论文,湖南大学, 2016.
4 Tan Q Y, Atrens A, Mo N, et al. Corrosion Science, 2016, 112,734.
5 Wang X M. Investigation of high temperature oxidation and improved surface protection of magnesium alloys. Ph.D. Thesis, Shanghai Jiao Tong University, Chian, 2007(in Chinese).
王雪敏. 镁合金高温氧化及表面改性研究. 博士学位论文, 上海交通大学, 2007.
6 Czerwinski F. International Materials Reviews, 2015, 60(5),264.
7 You G Q. Basic research on new gas protection technology of magnesium melt. Ph.D. Thesis, Chongqing University, China, 2007(in Chinese).
游国强. 新型镁熔体气体保护技术基础研究. 博士学位论文,重庆大学, 2007.
8 Czerwinski F. Acta Materialia, 2002, 50(10),2639.
9 Czerwinski F. JOM, 2012, 64(12), 1477.
10 Lee D B. Corrosion Science, 2013, 70, 243.
11 Pilling N B, Bedworth R E. Journal of the Institute of Metals, 1923, 29(3), 529.
12 Birks N, Meier G H, Pettit F S. Introduction to the high temperature oxidation of metals, Cambridge University Press, Britain, 2006.
13 Tan Q Y, Yin Y, Mo N, et al. Surface Innovations, 2019, 7(2),71.
14 Fan J F, Yang G C, Zhou Y H, et al. Foundry Technology, 2006, 27(6), 605(in Chinese).
樊建锋, 杨根仓, 周尧和, 等.铸造技术, 2006, 27(6), 605.
15 Balart M J, Fan Z. International Journal of Cast Metals Research, 2014, 27(3), 167.
16 Liu M, Shih D S, Parish C, et al. Corrosion Science, 2012, 54, 139.
17 Cheng C L, Le Q C, Li X Q, et al. Corrosion Science, 2020,168,108565.
18 Meenashisundaram G K, Ong T H D, Parande G, et al. Journal of Rare Earths, 2017, 35(7),723.
19 Czerwinski F. Advanced Materials & Processes, 2014, 172, 28.
20 Tekumallal S, Gupta M. Materials & Design, 2017, 113,84.
21 Prasad A, Shi Z M, Atrens A. Corrosion Science, 2012, 55,153.
22 Liu C C, Liu S, Fu Y Y, et al. Corrosion Science, 2015, 100,177.
23 Alfe D, Gillan M J. Physical Review B, 2005, 71(22), 220101.
24 Finch G I, Quarrbell A G. Royal Society, 1933, 141(844), 398.
25 Lide D R. CRC handbook of chemistry and physics, CRC Press Boca Raton, Florida, 2003.
26 Earl A. Gulbransen Transactions of the Electrochemical Society, 1945, 87(1), 589.
27 Aydin D S, Bayindir Z, Hoseini M, et al. Journal of Alloys and Compounds, 2013, 569, 35.
28 Lee D B. Oxidation of Metals, 2016, 85(1-2), 65.
29 Aydin D S, Bayindir Z, Pekguleryuz M O. Advanced Engineering Mate-rials, 2015, 17(5), 697.
30 Griffiths W T, Pfeil L B. UK. Patent GB459848A,1937.
31 Pint B A. Oxidation of Metals, 1996, 45(1-2), 1.
32 Kiejna A. Journal of Physics: Condensed Matter, 1990, 2(29), 6331.
33 Pekguleryuz M. Alloying behavior of magnesium and alloy design,Cambridge: Woodhead Publishing, 2013.
34 Tan Q Y, Mo N, Jiang B, et al. Corrosion Science, 2017, 122, 1.
35 Aydin D S, Bayindir Z, Pekguleryuz M O. Journal of Materials Science, 2013, 48(23),8117.
36 Lin H, Yang M B, Tang H, et al. Progress in Natural Science: Materials International, 2018, 28(1),66.
37 Medved J, Mrvar P, Voncina M. Oxidation of Metals,2009,71(5-6),257.
38 Jiang N. Morphology control and microstructure and properties of Al-RE phase in AZ80 alloy containing rare earth. Ph.D. Thesis, Dalian University of Technology, China, 2017(in Chinese).
姜楠. 含稀土AZ80合金中Al-RE相形貌控制及组织性能研究.博士学位论文,大连理工大学, 2017.
39 Liu C M, Zhu X R, Zhou H T. Magnesium alloy phase atlas, Central South University Press, China, 2006(in Chinese).
刘楚明,朱秀荣,周海涛.镁合金相图集, 中南大学出版社, 2006.
40 Arrabal R, Pardo A, Merino M C, et al. Oxidation of Metals, 2011, 76(5-6),433.
41 Yu X W, Jiang B, He J J, et al. Journal of Alloys and Compounds, 2016, 687,252.
42 Huang X F, Zhu K, Cao X J. Foundry Technology, 2008, 29(11),1574(in Chinese).
黄晓锋, 朱凯, 曹喜娟.铸造技术, 2008, 29(11), 1574.
43 Fassell W M, Gulbransen L B, Lewis J R, et al. JOM, 1951, 3(7), 522.
44 Bobryshev B L, Aleksandrova Y P. Metal Science and Heat Treatment, 1988, 30(3),219.
45 Tekumalla S, Yang C, Seetharaman S, et al. Journal of Alloys and Compounds, 2016, 689,350.
46 Yu X W, Jiang B, He J J, et al. Journal of Alloys and Compounds, 2018, 749, 1054.
47 Mirak A R, Davidson C J, Taylor J A, et al. Journal of Magnesium and Alloys, 2015, 3(3),173.
48 Yu X W, Shen S J, Jiang B, et al. Applied Surface Science, 2016, 370, 357.
49 Wu L Y, Yang Z. Journal of Alloys and Compounds, 2015, 626, 194.
50 Wang W L, Wang W, Wang Q, et al. Materials Research Express, 2018, 6(1),016536.
51 Yu X W, Jiang B, Yang H, et al. Applied Surface Science, 2015, 353,1013.
52 Fan J F, Yang G C, Chen S L, et al. Journal of Materials Science, 2004, 39(20), 6375.
53 Lin P Y, Zhou H, Li W, et al. Corrosion Science, 2008, 50(9),2669.
54 Li W, Zhou H, Zhou W, et al. Materials Letters, 2007, 61(13), 2772.
55 Lin P Y, Zhou H, Sun N, et al. Corrosion Science, 2010, 52(2),416.
56 Wang X M, Zeng X Q, Wu G S, et al. Journal of Alloys and Compounds, 2008, 456(1-2), 384.
57 Kujur M S, Manakari V, Parande G, et al. Ceramics International, 2018, 44,15035.
58 Zhao X Y, Ning Z L, Song H Q, et al. Journal of Materials Engineering and Performance, 2019, 28(9), 5344.
59 Mirak A R, Davidson C J, Taylor J A. Applied Surface Science, 2014, 301,91.
60 Aydin D S, Bayindir Z, Pekguleryuz M O. Journal of Alloys and Compounds, 2014, 584, 558.
61 Aydin D S, Hoseini M, Pekguleryuz M O. Philosophical Magazine, 2015, 95(3),259.
62 Cheng C L, Lan Q, Liao Q Y, et al. Corrosion Science, 2019, 160,108176.
63 Li Y Y, Zhao W M, Ding J, et al. China Foundry, 2018, 15(2), 97.
64 Dvorsky D, Kubasek J, Vojtech D, et al. Materials Letters, 2020, 264,127313.
65 Zhou M R, Huang X S, Morisada Y, et al. Materials Science & Enginee-ring A, 2020, 769, 138474.
66 Cheng C L, Lan Q, Wang A, et al. Metals, 2018, 8(10), 766.
67 Li F, Peh W Y, Nagarajan V, et al. Materials & Design, 2016, 99,37.
68 Inoue S I, Yamasaki M, Kawamura Y. Corrosion Science,2019,149,133.
69 Inoue S I, Yamasaki M, Kawamura Y. Corrosion Science, 2017, 122,118.
70 Lee T W, Park H W, Lim H, et al. Journal of Alloys and Compounds, 2017, 714,397.
71 Lee T W, Kim H G, So M G, et al. Journal of Alloys and Compounds, 2015, 635,5.
72 Han G S, Chen D, Chen G, et al. Journal of Materials Science & Technology, 2018, 34(11),2063.
73 Harkness J C, Spiegelberg W D, Cribb W R. ASM International, Metals Handbook, 1990, 2,403.
74 Houska C. Metals and Materials, 1988, 4(2),100.
75 Huang Y B, Chung I S, You B S. Metals and Materials International, 2004, 10(1), 7.
76 Tan Q Y, Mo N, Jiang B, et al. Scripta Materialia, 2016, 115,38.
77 Tan Q Y, Mo N, Lin C L, et al. Corrosion Science, 2018, 132,272.
78 Tan Q Y, Mo N, Lin C L, et al. Corrosion Science, 2019, 147,357.
79 Cao P, Qian M, Stjohn D H. Scripta Materialia, 2004, 51(7),647.
[1] 曾小川, 李学军, 邓小云, 胡侨丹, 尤磊. SA508 Gr.4N钢的辐照脆化性能研究进展[J]. 材料导报, 2021, 35(Z1): 438-442.
[2] 王玉娇, 江海涛, 张韵, 王盼盼, 于博文, 徐哲. 镁合金海水电池阳极材料电化学性能研究进展[J]. 材料导报, 2021, 35(9): 9041-9048.
[3] 张先满, 陈再雨, 罗洪峰. 合金元素对Fe/Al界面反应影响的研究进展[J]. 材料导报, 2021, 35(7): 7145-7154.
[4] 陈斐洋, 郭鹏程, 胡泽豪, 马洪浩, 张立强. 不同温度下AM80镁合金的动态力学响应及本构建模[J]. 材料导报, 2021, 35(16): 16093-16098.
[5] 刘筱, 王洋洋, 叶俊宏, 朱必武, 杨辉, 胡铭月, 唐昌平, 刘文辉. AZ31镁合金高应变速率轧制宏微观仿真[J]. 材料导报, 2021, 35(14): 14101-14106.
[6] 杨平, 毛育青, 李芊芃, 何良刚, 柯黎明. 合金元素对Cu/Sn-/Cu回流焊焊点界面微观结构及剪切性能的影响[J]. 材料导报, 2021, 35(14): 14156-14160.
[7] 崔功军, 师睿博, 李赛, 刘慧强, 寇子明. AZ80A、ZK60A和ME20M镁合金干摩擦学性能研究[J]. 材料导报, 2021, 35(10): 10103-10108.
[8] 郝文俊, 孙荣禄, 牛伟, 谭金花, 李小龙. 合金元素影响高熵合金涂层组织及力学性能综述[J]. 材料导报, 2020, 34(Z2): 330-333.
[9] 吴韬, 段佳伟, 陈小明, 俞立涛, 陈云祥, 石淑琴. 合金元素对激光熔覆高熵合金涂层影响的研究进展[J]. 材料导报, 2020, 34(Z1): 413-419.
[10] 刘江林, 齐艳阳, 王涛, 王跃林, 任忠凯, 韩建超. 镁合金板材轧制成形边裂的研究进展[J]. 材料导报, 2020, 34(7): 7138-7145.
[11] 余东海, 熊开琴, 黄楠. 等离子体聚合聚环氧乙烷类涂层用于提高镁合金心血管支架抗腐蚀性能[J]. 材料导报, 2020, 34(6): 6166-6171.
[12] 王向杰, 冯蕾, 武靖亭, 肖新华, 苏蓓蓓. 搅拌摩擦焊接ZK60镁合金弯曲性能与断裂行为研究[J]. 材料导报, 2020, 34(4): 4083-4086.
[13] 赵磊杰, 马立峰, 韩廷状, 范沁红. 变形镁合金轧制成形研究进展[J]. 材料导报, 2020, 34(21): 21135-21145.
[14] 刘亮, 汪志太, 杨伟, 王振军, 蔡长春, 余欢. 铜模喷铸Mg-6Al-1Y合金快冷组织形成及其固溶行为[J]. 材料导报, 2020, 34(20): 20066-20069.
[15] 王柏宁, 王峰, 王志, 周乐, 毛萍丽, 刘正. 铸态与挤压态AM50-4%(Zn,Y)合金组织及力学性能[J]. 材料导报, 2020, 34(20): 20076-20080.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed