Please wait a minute...
材料导报  2021, Vol. 35 Issue (10): 10103-10108    https://doi.org/10.11896/cldb.20050164
  金属与金属基复合材料 |
AZ80A、ZK60A和ME20M镁合金干摩擦学性能研究
崔功军1,2,3, 师睿博1,2,3, 李赛1,2,3, 刘慧强1,2,3, 寇子明1,2,3
1 太原理工大学机械与运载工程学院,太原 030024
2 矿山流体控制国家地方联合工程实验室,太原 030024
3 山西省矿山流体控制工程技术研究中心,太原 030024
Study on the Tribological Properties of AZ80A, ZK60A and ME20M Magnesium Alloys Under Dry-sliding Condition
CUI Gongjun1,2,3, SHI Ruibo1,2,3, LI Sai1,2,3, LIU Huiqiang1,2,3, KOU Ziming1,2,3
1 College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, China
2 National-local Joint Laboratory of Mining Fluid Control Engineering, Taiyuan 030024, China
3 Shanxi Research Center of Mining Fluid Control Engineering, Taiyuan 030024, China
下载:  全 文 ( PDF ) ( 6373KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 镁合金被广泛应用于航空航天、汽车及军事等领域,但其摩擦学性能对零部件的服役寿命和可靠性具有重大影响。本研究采用往复式球-盘摩擦方式,通过与GCr15钢球配副,研究干摩擦条件下AZ80A、ZK60A和ME20M镁合金在不同滑动速度和载荷条件下的摩擦磨损行为。采用扫描电子显微镜和能谱仪分析镁合金的显微结构及磨损机理。结果表明:当滑动速度超过0.10 m/s时,随着速度的增加,合金的摩擦系数逐渐降低,而磨损率则先减小后增大,其原因在于摩擦热的作用导致摩擦表面形成了氧化物,同时材料表面软化,剪切力降低,使摩擦系数和磨损率不断减小;当滑动速度增加到0.20 m/s时,摩擦表面温度升高,金属软化导致磨损表面金属氧化物剥落,增大了合金的磨损率。随着载荷的增加,合金的摩擦系数和磨损率持续降低。干摩擦条件下镁合金的磨损机理逐渐由磨粒磨损和塑性变形转变为磨粒磨损、氧化磨损、粘着磨损和塑性变形。与ZK60A和ME20M相比,AZ80A镁合金表现出较好的摩擦学性能,这归因于合金的高硬度、β-Mg17Al12硬质相的支撑作用以及摩擦过程中形成的氧化物。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
崔功军
师睿博
李赛
刘慧强
寇子明
关键词:  镁合金  干滑动  摩擦  磨损    
Abstract: Magnesium alloys were widely used in the aerospace, automotive and military fields, and the reliability and service life of moving parts of magnesium alloys depended on their tribological properties. In this paper, the tribological behavior of AZ80A, ZK60A and ME20M magne-sium alloys was tested by using a reciprocating ball-on-disk tribometer sliding against GCr15 steel ball under dry-sliding condition at different applied loads and sliding speeds. The wear mechanisms of magnesium alloys were analyzed by the scanning electron microscope and energy spectrometer at different loads and speeds. The results showed that the friction coefficients of alloys gradually decreased with the increase of sliding speed when the sliding speed exceeded 0.10 m/s. However, the wear rates decreased, and then increased. It was ascribed to the low shear force and formation of oxides on the worn surfaces due to the friction heat. When the sliding speed reached up to 0.20 m/s, the metal oxides peeled off from the surface in order to increase the wear rates of alloys because of the elevated temperature. The friction coefficients and wear rates of alloys increased as the applied loads increased. The wear mechanisms of magnesium alloys transferred from the abrasive wear and plastic deformation to the abrasive wear, oxidative wear, adhesive wear and plastic deformation under dry-sliding condition. The AZ80A alloy showed the good tribological properties as compared with ZK60A and ME20M alloys. It was ascribed to the high hardness, β-Mg17Al12 hard phase and metal oxides on the contacting surfaces.
Key words:  magnesium alloys    dry-sliding    friction    wear
               出版日期:  2021-05-25      发布日期:  2021-06-04
ZTFLH:  TH117.1  
基金资助: 国家自然科学基金(51775365);国家自然科学基金青年基金(51405329)
通讯作者:  cuigongjun@tyut.edu.cn   
作者简介:  崔功军,太原理工大学教授,主要研究方向为机械摩擦学、复合材料及合金。主持多项国家级及省级科研项目,包括国家自然科学青年基金2项(51775365, 51405329)、博士后基金1项(2015M570239)等,在国内外学术期刊发表论文50余篇。
引用本文:    
崔功军, 师睿博, 李赛, 刘慧强, 寇子明. AZ80A、ZK60A和ME20M镁合金干摩擦学性能研究[J]. 材料导报, 2021, 35(10): 10103-10108.
CUI Gongjun, SHI Ruibo, LI Sai, LIU Huiqiang, KOU Ziming. Study on the Tribological Properties of AZ80A, ZK60A and ME20M Magnesium Alloys Under Dry-sliding Condition. Materials Reports, 2021, 35(10): 10103-10108.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20050164  或          http://www.mater-rep.com/CN/Y2021/V35/I10/10103
1 Lei Y, Yan H G, Chen J H, et al.Materials Reports B:Research Papers, 2020, 34(1), 2067(in Chinese).
雷意,严红革,陈吉华,等. 材料导报:研究篇, 2020, 34(1), 2067.
2 Wang C M, Yang M N, Huang J H, et al.Materials Reports A:Review Papers, 2019, 33(7), 2260 (in Chinese).
王春明,杨牧南,黄建辉,等.材料导报:综述篇, 2019, 33(7), 2260.
3 You G Q, Guo W, Zhang X L, et al.Journal of Materials Engineering, 2018, 46(1), 141 (in Chinese).
游国强, 郭伟, 张秀丽, 等. 材料工程, 2018, 46(1), 141.
4 An J, Li R G, Lu Y, et al.Wear, 2008, 265(1), 97.
5 Hu H J, Sun Z, Ou Z W, et al. Engineering Failure Analysis, 2017, 72, 25.
6 Li, H, Lu S T, Qin W, et al. Acta Astronautica, 2015, 116, 126.
7 Huang S J, Aqeel A, Beáta B.Journal of Materials Research and Techno-logy, 2019, 8(5), 4273.
8 Zafari A, Ghasemi H M, Mahmudi R.Wear, 2013, 303(1-2), 98.
9 Tazegul O, Muhaffel F, Meydanoglu O, et al.Surface and Coatings Technology, 2014, 258, 168.
10 Chen B X, Chen W.Materials Protection, 2019, 52(5), 44 (in Chinese).
陈斌星, 陈伟.材料保护, 2019, 52(5), 44.
11 Cao Z, Wang X D, Dong J, et al.Chinese Journal of Rare Metals, 2018, 42(2), 139 (in Chinese).
曹振, 王旭东, 董杰, 等. 稀有金属, 2018, 42(2), 139.
12 Hadadzadeh A, Wells M A, Shaha S K, et al. Journal of Alloys and Compounds, 2017, 702, 274.
13 Zhang T F, Huang J H, Deng M, et al.Forging & Stamping Technology, 2006(6), 40 (in Chinese).
张庭芳, 黄菊花, 邓敏, 等. 锻压技术, 2006(6), 40.
14 Li Y, Zhang Z M,Xue Y.Transactions of Nonferrous Metals Society of China, 2011, 21(4), 739.
15 Xie B W, Sha G Y, Dong G Y, et al.Light Alloy Fabrication Technology, 2019, 47(3), 53 (in Chinese).
谢博文, 沙桂英, 董庚益, 等. 轻合金加工技术, 2019, 47(3), 53.
16 Guo Y Y, Lin Z X, Jiang H Y, et al.The Chinese Journal of Nonferrous Metals, 2011, 21(1), 58 (in Chinese).
郭言炎, 林志埙, 蒋海燕, 等. 中国有色金属学报, 2011, 21(1), 58.
17 Chen Z, Zhang M L, Lyu Y Z, et al.Foundry Technology, 2007,28(6), 820 (in Chinese).
陈增, 张密林, 吕艳卓, 等. 铸造技术, 2007, 28(6), 820.
18 Dahle A K, Lee Y C, Nave M D, et al.Journal of Light Metals, 2001, 1(1), 61.
19 Barnett M R, Nave M D, Bettles C J.Materials Science & Engineering A, 2004, 386(1-2), 205.
20 Aung N N, Zhou W, Lim Lennie E N. Wear, 2008, 265(5), 780.
21 Wang J H, Teng C Y, Li X Q, et al.Materials Reports, 2017, 31(S2), 367 (in Chinese).
王金辉, 腾朝艳, 李小强, 等. 材料导报, 2017, 31(专辑30), 367.
22 Bi Q L, Liu W M, Ma J Q, et al.Tribology International, 2009, 42, 1081.
23 Huang W J, Hou B, Pang Y X, et al.Tribology, 2005, 25(3), 225 (in Chinese).
黄伟九, 侯滨, 庞佑霞, 等. 摩擦学学报, 2005, 25(3), 225.
24 Taltavull C, Rodrigo P, Torres B, et al.Materials and Design, 2014, 56, 549.
25 Hu M L, Wang Q D, Li,C, et al.Transactions of Nonferrous Metals Society of China, 2012, 22(8), 1918.
26 Chen Q Q, Liu Y Y, Zhao Z H, et al.Journal of Northeastern University (Natural Science), 2017, 38(11), 1554 (in Chinese).
陈庆强, 刘宇洋, 赵志浩, 等. 东北大学学报(自然科学版),2017, 38(11), 1554.
27 Hui Y, Liu G M, Yan T, et al.Surface Technology, 2019, 48(10), 196 (in Chinese).
惠阳, 刘贵民, 闫涛, 等. 表面技术, 2019, 48(10), 196.
28 Chen L,Zhang X M, Liu F, et al.Journal of Chongqing Technology and Business University(Natural Science Edition),2017,34(1),75(in Chinese).
陈凌, 张贤明, 刘飞, 等.重庆工商大学学报(自然科学版),2017,34(1),75.
[1] 王玉娇, 江海涛, 张韵, 王盼盼, 于博文, 徐哲. 镁合金海水电池阳极材料电化学性能研究进展[J]. 材料导报, 2021, 35(9): 9041-9048.
[2] 曾金成, 宋波, 左敦稳, 邓永芳. 外加辅助条件搅拌摩擦焊技术研究进展[J]. 材料导报, 2021, 35(7): 7162-7168.
[3] 刘敬福, 齐莉, 李广龙, 曲迎东. 真空搅拌TiCp/7075复合材料的组织、力学与耐磨性能[J]. 材料导报, 2021, 35(6): 6114-6119.
[4] 吴礼宁, 夏延秋, 吴浩, 陈中山, 曹亚楠, 侯冲. 纳米碳管/石墨烯导电硅脂的性能[J]. 材料导报, 2021, 35(6): 6189-6193.
[5] 王旭, 牛宗伟, 王晓明, 赵阳, 韩国峰, 常青, 付华, 滕涛, 赵菲菲. 外场(力)辅助射流电沉积研究现状[J]. 材料导报, 2021, 35(5): 5107-5121.
[6] 韩翠红, 石佳东, 刘云帆, 刘倩, 马国政, 李国禄, 王海斗. 关节轴承自润滑材料摩擦学性能及轴承寿命预测研究现状[J]. 材料导报, 2021, 35(5): 5166-5173.
[7] 王健, 杜国正, 张永, 武政, 高靖, 苏力德. 运行状态下风力机叶片涂层沙蚀磨损研究[J]. 材料导报, 2021, 35(4): 4177-4180.
[8] 刘敬萱, 沈健, 李锡武, 闫丽珍, 闫宏伟, 刘宏伟, 温凯, 李亚楠. 6005A-T5铝合金搅拌摩擦焊接头组织与疲劳性能[J]. 材料导报, 2021, 35(2): 2092-2097.
[9] 常川川, 李菊, 张田仓, 郭德伦. 焊后热处理对高氧TC4/TC17钛合金线性摩擦焊接头组织及性能的影响[J]. 材料导报, 2021, 35(10): 10109-10113.
[10] 刘云帆, 秦红玲, 韩翠红, 石佳东, 马国政, 王海斗. 自润滑关节轴承寿命试验及损伤失效机理研究现状[J]. 材料导报, 2021, 35(1): 1036-1045.
[11] 陈志凯, 关婷婷, 李强, 王井, 员霄. 激光淬火40Cr钢的冲击磨损行为研究[J]. 材料导报, 2020, 34(Z2): 407-411.
[12] 李锐, 曾令碧, 刘腾, 王晓杰, 杨平安. 不同温度下纯Ni/NiTi合金的摩擦特性研究[J]. 材料导报, 2020, 34(Z1): 297-303.
[13] 江雯, 蒋璐瑶, 黄伟九, 郭非, 董海澎. 退火处理对搅拌摩擦加工LZ91双相镁锂合金微观组织及力学性能的影响[J]. 材料导报, 2020, 34(Z1): 307-311.
[14] 张洋, 张海燕, 陈蕴博, 王大鹏, 陈林, 刘晓萍. 热处理对热压制备Al-Cu-Mg/SiCp制动耐磨复合材料组织及磨损性能的影响[J]. 材料导报, 2020, 34(Z1): 356-360.
[15] 李亚林, 孙垒, 曹柳絮, 焦孟旺, 罗伟, 邱振宇, 王畅. 汽车制动盘用铝基复合材料摩擦磨损研究进展[J]. 材料导报, 2020, 34(Z1): 361-365.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed