Please wait a minute...
材料导报  2021, Vol. 35 Issue (7): 7162-7168    https://doi.org/10.11896/cldb.19050125
  金属与金属基复合材料 |
外加辅助条件搅拌摩擦焊技术研究进展
曾金成1, 宋波2, 左敦稳3, 邓永芳1,4
1 江西理工大学工程研究院,赣州 341000
2 兰州理工大学机电学院,兰州 730050
3 南京航空航天大学机电学院,南京 210016
4 赣州富尔特电子股份有限公司,赣州 341000
Research Progress of Friction Stir Welding with Additional Auxiliary Conditions
ZENG Jincheng1, SONG Bo2, ZUO Dunwen3, DENG Yongfang1,4
1 Engineering Research Institute, Jiangxi University of Science and Technology, Ganzhou 341000, China
2 School of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
3 College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
4 Ganzhou Fortune Electronic Co.Ltd., Ganzhou 341000, China
下载:  全 文 ( PDF ) ( 4814KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 搅拌摩擦焊(FSW)是一种应用广泛的固相连接技术,但仍存在部分材料焊接难度较大、接头晶粒较粗、异种材料FSW接头内金属间化合物(IMC)难以调控和接头力学性能有待进一步提高等问题,严重阻碍了FSW技术的发展。在传统FSW基础上添加辅助条件能有效克服传统FSW的不足,提高FSW接头的质量。传统FSW过程产热量有限,导致部分材料在焊接时搅拌头磨损严重且轴向力大,焊接效率低,甚至无法进行有效焊接。在焊接前添加预热措施或焊接时加入超声波辅助,可增加焊接材料的软化程度,有效降低焊接过程中搅拌头的磨损,减小焊接时的轴向力,提升焊接效率。针对传统FSW接头晶粒粗大的问题,利用超声波的机械振动作用破碎接头中已形成的再结晶晶粒,同时超声波提供的能量能够增大接头内位错密度,有效地抑制晶粒粗化;外加冷却辅助能够迅速带走焊接过程中产生的热量,使接头快速冷却,缩短晶粒生长时间,抑制晶粒长大。对于异种材料FSW,接头内生成的IMC大部分为脆硬相,是接头断裂的裂纹源和裂纹扩展路径,添加超声波辅助将已形成的IMC破碎并抑制IMC生成;外加冷却方式提高了接头的冷却速率,抑制IMC生长。为了进一步拓展FSW的应用领域,在传统FSW基础上添加了焊前预热、超声波和冷却条件等辅助手段,这对提高接头性能有一定作用,外加辅助条件能软化焊接材料,减小材料流动阻力,改善材料的流动性,避免焊缝缺陷的产生,获得良好的连接界面,有效地提升接头性能。本文从外加辅助条件的有益效果角度对外加辅助条件FSW技术进行了总结,综述了不同辅助条件下FSW在焊接过程、晶粒细化、IMC控制和性能提升方面的国内外最新研究进展,分析了不同辅助方式起到有益效果的基本原理,以期为FSW技术的研究者提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曾金成
宋波
左敦稳
邓永芳
关键词:  搅拌摩擦焊  外加辅助条件  金属间化合物  晶粒细化    
Abstract: Friction stir welding (FSW) is a widely used solid phase joining technology. However, there are still a few problems for some metals such as high welding difficulty, coarse grain size, the difficulty of controlling the intermetallic compounds (IMC) in FSW joints of different materials, and the further improvement of mechanical properties of joints, which seriously hinders the development of FSW technology. Adding auxiliary conditions under the basis of the conventional FSW can effectively overcome the defects of the conventional FSW and improve the quality of the FSW joint. Limited heat production of the conventional FSW process, causing serious wear on the tool and large axial force during progress for some materials even cannot getting effective FSW joint. The researcher study on adding preheating method before welding and ultrasonic assisting during process, which effectively softened the welding material, reduced the wear of the tool during welding, reduced the axial force during welding, and improved the welding effectiveness. There are large crystal grains existed in the conventional FSW joints. The researchers used the mechanical vibration of ultrasonic to break up the dynamic recrystallized grains during the welding process, and the energy provided by the ultrasonic increases the dislocation density in the joints. The addition of the external cooling in the progress take the heat generated away, the joint can be cool rapidly, shorten grain growth time, and inhibit crystal grains growth in the joint. Most of IMCs are brittle hard phases, and they are crack sources and extension paths for joint fractures formed in the dissimilar FSW joints. The addition of ultrasonic assist can break up the formed IMC and inhi-bit formation IMC in the joint. The external cooling method can quickly take away the heat which generated in the welding process and inhibit the IMC growth. The researchers studied the effects of additional auxiliary conditions of preheating, ultrasonic and cooling conditions on the perfor-mance of joints in order to further expand the application field of FSW. These methods improve the material fluidity, obtain sound joint interface and avoiding the weld defects, which can soften the welding material with reduce the flow resistance of the material properties of the joint. This paper summarizes the additional auxiliary conditions FSW technology from the perspective of beneficial effects with additional auxiliary conditions. The latest research progress of different auxiliary methods in FSW process, grain refinement, IMC control and mechanical properties improvement are reviewed. The basic principles that various assistant modes with different beneficial effects are analyzed. This paper provide refe-rence for FSW researchers.
Key words:  friction stir welding    additional auxiliary conditions    intermetallic compound    refine grains
               出版日期:  2021-04-10      发布日期:  2021-04-22
ZTFLH:  TG453  
基金资助: 国家自然科学基金面上项目(51175255);江西省自然科学基金(20171BAB216033);江西省教育厅科学技术研究项目(GJJ170501);赣州市科技计划项目科技创新人才计划;江西理工大学博士启动基金(jxxjbs16001)
作者简介:  曾金成,江西理工大学,硕士研究生,2014年9月至2018年6月 在江西理工大学获得学士学位,2018年9月至今在江西理工大学学攻读硕士学位。
邓永芳,江西理工大学工程研究院副教授、硕士研究生导师。2008年6月本科毕业于西南交通大学,2015年12月在南京航空航天大学机械制造及其自动化专业取得博士学位。主要从事搅拌摩擦焊接方面的研究工作。近年来,在搅拌摩擦焊接领域发表论文10余篇。
引用本文:    
曾金成, 宋波, 左敦稳, 邓永芳. 外加辅助条件搅拌摩擦焊技术研究进展[J]. 材料导报, 2021, 35(7): 7162-7168.
ZENG Jincheng, SONG Bo, ZUO Dunwen, DENG Yongfang. Research Progress of Friction Stir Welding with Additional Auxiliary Conditions. Materials Reports, 2021, 35(7): 7162-7168.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19050125  或          http://www.mater-rep.com/CN/Y2021/V35/I7/7162
1 Mishra R S, Ma Z Y. Materials Science & Engineering R, 2010, 50(1),1.
2 Thomas W M, Nicholas E D.Materials & Design, 1997, 18(4-6),269.
3 Santos T G, Miranda R M, Vilaça P. Key Engineering Materials, 2014, 611(10),763.
4 Sun Y F, Konishi Y, Kamai M, et al. Materials & Design, 2013, 47, 842.
5 Yaduwanshi D K, Bag S, Pal S. Materials & Design, 2016, 92,166.
6 Liu X, Lan S, Ni J. Journal of Materials Processing Technology, 2015, 219,112.
7 Sun Y F, Shen J M, Morisada Y, et al.Materials & Design, 2014, 54,450.
8 Merklein M, Giera A. International Journal of Material Forming, 2008, 1(1),1299.
9 Liu X C, Wu C S.Journal of Materials Processing Technology, 2015, 225,32.
10 Thomä M, Wagner G, Straβ B, et al.Journal of Materials Science & Technology, 2018, 34(1), 163.
11 Kumar S.Archives of Civil and Mechanical Engineering, 2016, 16(3), 473.
12 Liu Z, Ji S, Meng X.International Journal of Advanced Manufacturing Technology, 2018, 97(9-12),4127.
13 Ma Z, Jin Y, Ji S, et al.Journal of Materials Science & Technology, 2019, 35(1),94.
14 Gao S, Wu C S, Padhy G K. Journal of Manufacturing Processes,2017,30,385.
15 Wang B B, Chen F F, Liu F, et al. Journal of Materials Science & Technology, 2017,33(9),1009.
16 Shanavas S, Dhas J E R, Murugan N.International Journal of Advanced Manufacturing Technology, 2018, 95(2),1.
17 Ruzbehani R, Koukabi A H, Sabet H, et al. Journal of Materials Processing Technology, 2018,262,239.
18 Mofid M A, Abdollah-Zadeh A, Ghaini F M .Materials & Design, 2012, 36,161.
19 Mofid M A, Abdollah-Zadeh A, Gür C H.Metallurgical & Materials Transactions A, 2012, 43(13),5106.
20 Mofid M A, Abdollah-Zadeh A, Hakan Gür C. The International Journal of Advanced Manufacturing Technology, 2014, 71(5-8),1493.
21 Zhang H.Metallography Microstructure & Analysis, 2012, 1(6),269.
22 Mehta K P, Badheka V J.Journal of Materials Processing Technology, 2017, 239,336.
23 Bijanrostami K, Barenji R V, Hashemipour M.Journal of Materials Engineering & Performance, 2017, 26(2),909.
24 Wahid M A, Khan Z A, Siddiquee A N.Transactions of Nonferrous Metals Society of China, 2018, 28(2),193.
25 Ji S, Meng X, Liu Z, et al. Materials Letters, 2017, 201, 173.
26 Lv X, Wu C S, Padhy G K .Materials Letters, 2017, 203,81.
27 Suhuddin U, Fischer V, Kroeff F, et al. Materials Science & Engineering A, 2014, 590,384.
28 Bisadi H, Tavakoli A, Sangsaraki M T, et al.Materials & Design, 2013, 43,80.
29 Yamamoto N, Liao J, Watanabe S, et al. Materials Transactions, 2009, 50(12),2833.
30 Sinhmar S, Dwivedi D K.Materials Science and Engineering: A, 2017, 684,413.
31 Zhang J, Shen Y, Yao X, et al. Materials & Design, 2014, 64(56),74.
32 Fei X, Ye Y, Jin L, et al. Journal of Materials Processing Technology, 2018, 256,160.
33 Yaduwanshi D K, Bag S, Pal S.Journal of Materials Engineering & Performance, 2014, 23(10),3794.
34 Bang H S, Bang H S, Jeon G H, et al. Materials & Design, 2012, 37,48.
35 Oliveira J P,Duarte J F, Inácio P, et al. Materials & Design, 2017, 113,311.
36 Lv X, Wu C S, Yang C, et al. Journal of Materials Processing Technology, 2018, 254,145.
37 Wu M, Wu C S, Gao S. Journal of Manufacturing Processes, 2017, 29,85.
38 Wei Y, Aiping W, Guisheng Z, et al. Materials Science and Enginee-ring: A, 2008, 480(1-2), 456.
39 Ma Z, Wang Y, Ji S, et al. Journal of Manufacturing Processes, 2018, 36,238.
40 Zhao Y, Jiang S, Yang S, et al. The International Journal of Advanced Manufacturing Technology, 2016, 83(1-4),673.
41 Zhao Y, Wang Q, Chen H, et al. Materials & Design, 2014, 56(4),725.
[1] 刘敬萱, 沈健, 李锡武, 闫丽珍, 闫宏伟, 刘宏伟, 温凯, 李亚楠. 6005A-T5铝合金搅拌摩擦焊接头组织与疲劳性能[J]. 材料导报, 2021, 35(2): 2092-2097.
[2] 陈志强, 贾锦玉, 胡文鑫, 王玮, 刘峰. 铝合金稀土复合细化剂的研究进展[J]. 材料导报, 2020, 34(Z2): 365-370.
[3] 冉小杰, 周露, 黄福祥, 曾利娟. Cu/Al界面研究进展[J]. 材料导报, 2020, 34(Z1): 366-369.
[4] 闫敬明, 黎平, 左孝青, 周芸, 罗晓旭. Al-Ti-B晶粒细化剂研究进展:细化机理及第二相控制[J]. 材料导报, 2020, 34(9): 9152-9157.
[5] 刘国平, 王渠东, 蒋海燕. 铜/铝双金属复合材料研究新进展[J]. 材料导报, 2020, 34(7): 7115-7122.
[6] 肖华强, 陈禹伽, 陈维平, 何佳容, 赵思皓. 材料在铝液中熔蚀-磨损行为的研究进展[J]. 材料导报, 2020, 34(7): 7123-7129.
[7] 蔺宏涛, 孟强, 王怡嵩, 王家毅, 张韵, 江海涛. 旋转速度对高强度钢Q&P980搅拌摩擦焊接头组织与性能的影响[J]. 材料导报, 2020, 34(6): 6126-6131.
[8] 王向杰, 冯蕾, 武靖亭, 肖新华, 苏蓓蓓. 搅拌摩擦焊接ZK60镁合金弯曲性能与断裂行为研究[J]. 材料导报, 2020, 34(4): 4083-4086.
[9] 金玉花, 张林, 张亮亮, 王希靖. 7050铝合金搅拌摩擦焊接头的微观织构演变与力学性能[J]. 材料导报, 2020, 34(20): 20107-20111.
[10] 石全举, 顾振杰, 周圣丰. 激光原位合成NiTi基复合涂层的微结构特征与耐蚀性能[J]. 材料导报, 2020, 34(2): 2110-2116.
[11] 刘玉洁, 蒋显全, 佘欣未, 王浦全, 冉洋, 彭和, 冉贞德. 固溶处理冷却方式对Cu/Al复合板界面微观组织的影响[J]. 材料导报, 2020, 34(10): 10132-10137.
[12] 仇一卿, 范祝男, 黄春平, 李宝华, 唐众民. 厚板Cu-Cr-Zr合金搅拌摩擦焊接接头沿厚度方向组织和力学性能的变化[J]. 材料导报, 2020, 34(10): 10162-10165.
[13] 刘卓萌, 刘忠军, 姬帅, 雒设计. Ti5Si3的制备与应用研究进展[J]. 材料导报, 2019, 33(Z2): 175-180.
[14] 彭成, 梁爽, 黄福祥, 钟明君, 冉小杰. 键合丝键合界面研究进展[J]. 材料导报, 2019, 33(Z2): 501-504.
[15] 蔺宏涛, 江海涛, 王怡嵩, 张坤, 张贵华. 6016-T4铝合金与镀锌IF钢搅拌摩擦焊接头的组织与性能[J]. 材料导报, 2019, 33(9): 1443-1448.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed