Please wait a minute...
材料导报  2021, Vol. 35 Issue (7): 7169-7175    https://doi.org/10.11896/cldb.19120246
  金属与金属基复合材料 |
微生物与磁场作用下管线钢的腐蚀行为研究进展
齐季1, 谢飞1,2, 王丹1,2, 赵杨1
1 辽宁石油化工大学,石油天然气工程学院,抚顺 113001
2 辽宁省油气储运技术重点实验室,抚顺 113001
Progress on Corrosion Behavior of Pipeline Steel Under the Effect of Microorganism and Magnetic Field
QI Ji1, XIE Fei1,2, WANG Dan1,2, ZHAO Yang1
1 College of Petroleum Engineering, Liaoning Shihua University, Fushun 113001, China
2 Key Laboratory of Oil and Gas Storage and Transportation Technology in Liaoning Province, Fushun 113001, China
下载:  全 文 ( PDF ) ( 3321KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着埋地年限的推移,目前已被大量应用于实际管道工程的X80钢等高强度管线钢开始逐批面临着腐蚀的危害。工地常采用的漏磁检测等现代技术在施工后难免会残留剩余磁场,与土壤中微生物和腐蚀性离子等因素一起形成了复杂的腐蚀体系。微生物和磁场作为工地上常见的腐蚀因子,对管道的腐蚀行为有着不同程度的影响。土壤中不同类型的细菌对埋地管线钢的腐蚀机理和腐蚀程度不同,最常见的两种微生物——好氧菌铁细菌(IOB)及厌氧菌硫酸盐还原菌(SRB)对腐蚀影响较为突出,而目前研究学者对IOB的腐蚀机理认识趋于统一,对于SRB的腐蚀机理却有多种假设。人工磁场、漏磁检测等技术已成为新时代的产物,而当前却鲜有针对磁场在工程实际中的相关研究,磁场与微生物共存时的研究也仍处于初期阶段。学术界已通过大量实验研究了SRB与IOB对钢材的腐蚀行为,证实了微生物加速金属腐蚀的假设,同时SRB与IOB共存时,二者的协同作用进一步加剧了金属腐蚀。磁场不仅单方面对金属腐蚀有影响,在微生物存在的情况下,亦对微生物的活性有抑制作用,但在一定的磁场范围内又可通过钢材表面电化学行为及介质内离子流动改变生物膜或钢材表面的特性,进而起到抑制腐蚀的作用。综合已有研究可知,磁场、微生物共存时的腐蚀体系极为复杂,对已有结果进行归纳并展望此领域的研究前景实有必要。本文归纳了两种主要微生物,即厌氧菌硫酸盐还原菌(SRB)、好氧菌铁细菌(IOB)分别与磁场共同作用时对金属腐蚀的机理,总结了学术界关于磁场与硫酸盐还原菌协同作用的研究现状,分析了现有研究尚存在争议的问题和缺陷,并对本领域的未来研究提出新的思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
齐季
谢飞
王丹
赵杨
关键词:  管线钢  磁场  好氧菌铁细菌  厌氧菌硫酸盐还原菌    
Abstract: At present, high-strength pipeline steels such as X80 steel, which have been widely used in actual pipeline engineering, have begun to face corrosion hazards one by one with the burying time. Modern technologies such as magnetic flux leakage detection often used at construction sites will inevitably have residual magnetic fields after construction, combined with complex corrosion systems formed by factors such as microorganisms and corrosive ions in the soil. Microbes and magnetic fields, as common corrosion factors in construction sites, have varying degrees of influence on the corrosion behavior of pipelines. The corrosion mechanism and degree of different types of bacteria on buried pipeline steels in the soil are different. The two most common microorganisms are aerobic bacteria iron bacteria (IOB) and anaerobic bacteria sulfate-reducing bacteria (SRB). While the current research on the corrosion mechanism of IOB tends to be consistent, the corrosion mechanism of SRB has many assumptions. Techniques such as artificial magnetic fields and magnetic flux leakage detection have become the products of the new era, but there are few related researches on magnetic fields in engineering practice, and the research on the coexistence of magnetic fields and microorganisms is still in its infancy. The corrosion behavior of steel by SRB and IOB through a large number of experiments has been studied, which confirmed the hypothesis that microorganisms accelerate metal corrosion. At the same time, when SRB and IOB coexist, the two promote each other to further aggravate metal corrosion. The magnetic field not only unilaterally affects metal corrosion, but also inhibits the activity of microorganisms in the presence of microorganisms. However, within a certain range of magnetic fields, the biofilm or characteristics of the steel surface, in turn, play a role in inhibiting corrosion. It can be seen from the comprehensive research that the corrosion system in the presence of magnetic fields and microorganisms is extremely complicated. It is necessary to summarize the existing results and look forward to the research prospects in this field. This paper summarizes the mechanisms of two major microorganisms, namely anaerobic sulfate-reducing bacteria (SRB), aerobic iron bacteria (IOB), and magnetic fields, on the corrosion of metals, and summarizes the academic research on the synergistic effect of magnetic fields and sulfate-reducing bacteria The status quo is analyzed, and the controversial issues and deficiencies in the existing research are analyzed, and new ideas are proposed for future research in this field.
Key words:  pipeline steel    magnetic field    aerobic bacteria iron bacteria (IOB)    anaerobic bacteria sulfate-reducing bacteria (SRB)
               出版日期:  2021-04-10      发布日期:  2021-04-22
ZTFLH:  TG174  
基金资助: 国家自然科学基金(51604150);辽宁省“兴辽英才计划”(XLYC1807260);辽宁省自然科学联合基金(2020-HYLH-14)
作者简介:  齐季,2017年7月毕业于辽宁石油化工大学,获得工学学士学位。现为辽宁石油化工大学石油天然气工程学院研究生,在谢飞副教授的指导下进行研究。目前主要研究领域为材料腐蚀与防护。
谢飞,辽宁石油化工大学石油天然气工程学院副教授,硕士研究生导师。2013年6月毕业于中国石油大学(华东)获博士学位。先后入选“全国石油和化工行业优秀科技工作者”、“兴辽英才计划”青年拔尖人才、辽宁省“百千万人才工程”千人层次。主要从事油气储运安全技术的研究工作。近年来,在油气管道腐蚀与防护领域发表高水平论文70余篇。
引用本文:    
齐季, 谢飞, 王丹, 赵杨. 微生物与磁场作用下管线钢的腐蚀行为研究进展[J]. 材料导报, 2021, 35(7): 7169-7175.
QI Ji, XIE Fei, WANG Dan, ZHAO Yang. Progress on Corrosion Behavior of Pipeline Steel Under the Effect of Microorganism and Magnetic Field. Materials Reports, 2021, 35(7): 7169-7175.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19120246  或          http://www.mater-rep.com/CN/Y2021/V35/I7/7169
1 Maruthamuthu S, Kumar B D, Ramachandran S, et al. Industrial & Engineering Chemistry Research, 2011, 50(13), 8006.
2 Wu T, Sun C, Ke W. Bioelectrochemistry, 2017, 120, 57.
3 Chen X, Gao F, Song W, et al. Corrosion Science & Protection Technology, 2017,29(2),103.
4 Wang W D, Feng L I, Jing H U, et al. Chinese Journal of Applied & Environmental Biology,2015, 21(6), 1055.
5 Liu L. Corrosion behavior of X52 oil pipeline sulfate reducing bacteria. Master's Thesis,Southwest Petroleum University, China, 2016(in Chinese).
刘黎. X52输油管道硫酸盐还原菌腐蚀行为研究.硕士学位论文,西南石油大学, 2016.
6 Wang H,Jia X L,Zhang Q S. Oil Field Equipment, 2008, 37(3),89(in Chinese)
王辉, 贾星兰, 张全胜. 石油矿场机械, 2008,37 (3),89.
7 Wang H Y,Wu M,Xie F, et al. Materials Protection, 2016, 49(7), 9(in Chinese)
王海燕, 吴明, 谢飞, 等. 材料保护, 2016, 49(7),9.
8 Potenza L, Ubaldi L, Sanctis R D, et al. Mutation Research-Genetic Toxicology & Environmental Mutagenesis, 2004, 561(1-2),53.
9 Liu H, Gu T, Zhang G, et al. Corrosion Science, 2016, 102,93.
10 Costa I, Oliveira M C L, Melo H G D, et al. Journal of Magnetism & Magnetic Materials, 2004, 278(3) 348.
11 Wang H S, Ye S Y, Song Y L, et al. Transactions of the Chinese Society of Agricultural Engineering, 2007, 23(8),253(in Chinese)
王洪朔, 叶盛英, 宋贤良, 等. 农业工程学报, 2007, 23(8),253.
12 Curiel F, García R, López V, et al. Corrosion Science, 2011, 53(7), 2393.
13 Xu X L,Guo Q Y,Li L. Effect of Dynamic Magnetic Field on Microorga-nisms,2006(12),47(in Chinese)
许喜林, 郭祀远, 李琳. 华南理工大学学报(自然科学版), 2006(12),47.
14 Zheng B, Li K, Liu H, et al. Industrial & Engineering Chemistry Research, 2013, 53(1), 48.
15 Rucˇinskiene A, Bikulcius G, Gudaviciute L, et al. Electrochemistry Communications, 2002, 4(1),86.
16 Zhang K N,Wu M,Xie F, et al. Journal of Chinese Society for Corrosion and Protection,2017, 37(2),148(in Chinese)
张康南, 吴明, 谢飞, 等. 中国腐蚀与防护学报, 2017, 37(2),148.
17 Ju J Y. Study on electrochemical corrosion behavior of X70 steel in diffe-rent soil simulated solution under magnetic field. Master's Thesis, Liao-ning Shihua University, China, 2018(in Chinese).
鞠继元. 磁场条件下X70钢在不同土壤模拟溶液中电化学腐蚀行为研究. 硕士学位论文,辽宁石油化工大学, 2018.
18 Liu H, Fu C, Gu T, et al. Corrosion Science, 2015, 100,484.
19 Liu F, Zhang J, Sun C, et al. Corrosion Science, 2014, 83(6), 375.
20 Wu M,Zong Y,Xie F, et al. Journal of Materials Science and Enginee-ring,2017, 35(6), 897(in Chinese).
吴明, 宗月, 谢飞, 等. 材料科学与工程学报, 2017, 35(6),897.
21 Yang J S,Huang Y T,Wu C S, et al. Journal of Maoming College,2006, (4),1(in Chinese).
杨建设, 黄玉堂, 吴楚施, 等.茂名学院学报, 2006(4),1.
22 Lee S H, Kim S, Jeon B H, et al. Research Journal of Chemistry and Environment, 2010, 14(4), 67.
23 Liu H F, Wang M F, Xu L M, et al. Journal of Chinese Society for Corrosion and Protection,2004(1),46.
刘宏芳, 汪梅芳, 许立铭,等. 中国腐蚀与防护学报, 2004(1),46.
24 Fourçans A, Ranchou-Peyruse A, Caumette P, et al. Microbial Ecology, 2008,56(1),90.
25 Wolzogen V, Kuhr C A, Vlugt V L S,et al. Corrosion,1984,18(6),147.
26 Booth G, Tiller A. Corrosion Science, 1968, 8(8),583.
27 Tang H Q, Guo Z H, Zhang J H, et al. Journal of Chinese Society for Corrosion and Protection,1991(1),46(in Chinese).
唐和清, 郭稚弧, 张君华,等.中国腐蚀与防护学报, 1991(1),46.
28 Deng X H. Journal of Pingdingshan Institute of Technology, 2003(2),28(in Chinese).
邓小红.平顶山工学院学报, 2003(2),28.
29 Iverson W P. Science, 1966, 151(3713),986.
30 Zhang Y, Shen J. International Journal of Hydrogen Energy, 2006, 31(4),441.
31 Ding Q S, Wang W Y. New practical filtration technology,Metallurgical Industry Press, China, 2017(in Chinese).
丁启圣, 王维一. 新型实用过滤技术, 冶金工业出版社, 2017.
32 Zhang X Y, Wang F P, Du Y L, et al. Chemical Engineering of Oil and Gas, 1999(1),53(in Chinese).
张学元, 王凤平, 杜元龙, 等. 石油与天然气化工, 1999(1),53.
33 Han W T. Research on corrosion mechanism of iron bacteria in water supply pipe network. Master's Thesis, Harbin Institute of Technology, China, 2014(in Chinese).
韩文滔. 供水管网中铁细菌对管道腐蚀机理的研究. 硕士学位论文,哈尔滨工业大学, 2014.
34 Xu C, Zhang Y, Cheng G, et al. Materials Characterization,2008, 59(3)245.
35 Fang S J, Liu Y H, Qiao J, et al. Journal of Materials Engineering, DOI:info:doi/10.3969/j.issn.1001-4381.2013.06.001.
36 Li W T, Lin J. Equipment Environmental Engineering, 2007(6),19(in Chinese).
李文涛, 林晶.装备环境工程, 2007(6), 19.
37 Lv R H. Material Protection, 1990,23(1-2),358(in Chinese).
吕人豪. 材料保护, 1990,23(1-2), 358.
38 Lv Z P, Huang D L, Yang W. Corrosion & Protection,2002 (5),185(in Chinese).
吕战鹏, 黄德伦, 杨武. 腐蚀与防护, 2002 (5),185.
39 Wang C,Chen J M. Journal of Chinese Society for Corrosion and Protection, 1994(2),123(in Chinese).
王晨, 陈俊明. 中国腐蚀与防护学报, 1994(2),123.
40 Li K J.Corrosion behavior of microbes under static magnetic field. Master's Thesis, Huazhong University of Science and Technology, China, 2013(in Chinese).
李克娟. 静磁场作用下的微生物腐蚀行为研究. 硕士学位论文,华中科技大学, 2013.
41 Ghabashy M. Anti-Corrosion Methods and Materials, 1988, 35(1),12.
42 Yang J C, Qi T Y, Han T Y, et al. In: The 9th National Conference on Fluid Mechanics, Nanjing,2016(in Chinese).
阳倦成, 齐天煜, 韩天阳, 等. 第九届全国流体力学学术会议, 南京,2016.
43 Ghabashy M, Sedahmed G, Mansour I. British Corrosion Journal, 1982, 17(1),36.
44 Xu N, Xie F Q, Wu X Q. Materials Review, 2005(5),61(in Chinese).
徐楠, 谢发勤, 吴向清. 材料导报, 2005(5)61.
45 Hu J, Dong C F, Li X,et al. Journal of Materials Sciences & Technology, 2010,26(4),355.
46 Zhang X, Wang Z, Zhou Z, et al. Journal of Alloys & Compounds, 2016,698, 241.
47 Fojt L, StraŠák L, Vetterl V R, et al. Bioelectrochemistry, 2004, 63(1-2),337.
48 Novák J, StraŠák L, Fojt L, et al. Bioelectrochemistry, 2007, 70(1),115.
49 FilipiČ J, Kraigher B, Tepuš B, et al. Bioresource Technology, 2012, 120,225.
50 Fojt L, StraŠák L, Vetterl V. Electromagnetic Biology and Medicine, 2010, 29(4),177.
51 Wang H Y, Xie F, Wu M, et al. Chemistry, 2016, 79(4),332(in Chinese).
王海燕, 谢飞, 吴明, 等.化学通报, 2016, 79(4),332.
52 Do V T, Tang C Y, Reinhard M, et al. Environmental Science & Technology, 2012, 46(2),852.
53 Sueptitz R, Tschulik K, Uhlemann M, et al. Corrosion Science, 2011, 53(10), 3222.
54 Wang H Y. Effect of magnetic field on microbial corrosion behavior of X100 pipeline steel in simulated soil solution. Master's Thesis, Liaoning Shihua University, China, 2016(in Chinese).
王海燕. 磁场对X100管线钢在土壤模拟溶液中微生物腐蚀行为的影响规律. 硕士学位论文,辽宁石油化工大学, 2016.
55 Chen B, Qin S, Chen L, et al. Corrosion Science and Protection Techno-logy, 2014, 26(6),499(in Chinese).
陈碧, 秦双, 陈蕾, 等. 腐蚀科学与防护技术, 2014, 26(6),499.
56 Zheng B J. Growth characteristics and corrosion behavior of sulfate-redu-cing bacteria under static magnetic field. Master's Thesis, Huazhong University of Science and Technology, China, 2015(in Chinese).
郑碧娟. 静磁场作用下硫酸盐还原菌生长特性及腐蚀行为. 硕士学位论文,华中科技大学, 2015.
57 Numoto N, Shimizu K I, Matsumoto K, et al. Journal of Crystal Growth, 2013, 367,53.
[1] 王旭, 牛宗伟, 王晓明, 赵阳, 韩国峰, 常青, 付华, 滕涛, 赵菲菲. 外场(力)辅助射流电沉积研究现状[J]. 材料导报, 2021, 35(5): 5107-5121.
[2] 王弘义, 罗一平, 纪东升, 陈亚蒙. 基于赫兹接触理论的磁流变液电阻计算方法[J]. 材料导报, 2020, 34(Z1): 486-489.
[3] 赵静, 王天鹏, 张淮浩. 磁场作用下十二烷基苯磺酸钠对阳极铝箔的缓蚀性能及比电容的影响[J]. 材料导报, 2020, 34(6): 6156-6160.
[4] 时运, 胡荣祥, 马骏, 杜培松, 陈曦, 杜晓东. 外加磁场对等离子熔覆Fe313合金涂层组织性能的影响[J]. 材料导报, 2020, 34(24): 24127-24131.
[5] 荆婉婷, 吴明. 海洋干湿交替环境中HCO3-浓度对X100钢腐蚀行为的影响[J]. 材料导报, 2020, 34(24): 24138-24144.
[6] 白光乾, 王秋岩, 邓海全, 李冬林, 李云. 氢环境下X52管线钢的抗氢性能[J]. 材料导报, 2020, 34(22): 22130-22135.
[7] 孙雅杰, 常云龙. 磁控电弧焊接过程及新技术研究进展[J]. 材料导报, 2020, 34(21): 21155-21165.
[8] 贾卫平, 吴蒙华, 贾振元, 董桂馥, 李晓鹏, 周绍安. 超声功率对多场耦合作用下脉冲电沉积Ni-ZrO2纳米复合镀层性能的影响[J]. 材料导报, 2020, 34(2): 2017-2022.
[9] 孙福洋, 杨旭, 曹博. SRB+IOB对X100管线钢在鹰潭土壤模拟溶液中腐蚀行为的影响[J]. 材料导报, 2019, 33(z1): 373-376.
[10] 刘飞, 尹健, 邵琦, 卢春辉. 脉冲磁场对高含量自生Mg2Si/Mg-Al基复合材料凝固组织的影响[J]. 材料导报, 2019, 33(2): 293-297.
[11] 唐丽, 尹立孟, 王金钊, 刘成, 王学军. X80管线钢二次热循环的连续冷却转变行为及贝氏体相变动力学[J]. 材料导报, 2019, 33(18): 3119-3124.
[12] 谢 飞,王兴发,王 丹,孙东旭,戚建晶. 生物膜作用下管线钢应力腐蚀开裂行为研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1541-1548.
[13] 谢丽娜, 罗聪, 吴嘉敏, 王昌绚, 邬均. 利用均匀磁场提高聚乙烯亚胺-Fe3O4纳米颗粒复合物的磁转染效果[J]. 《材料导报》期刊社, 2018, 32(8): 1247-1251.
[14] 郑丽娟, 付宇明, 宗磊, 齐童. 交变磁场对高硬熔覆层成型质量的影响[J]. 材料导报, 2018, 32(6): 905-908.
[15] 吴明, 郭紫薇, 谢飞, 王丹, 王义闯, 郭大成, 姜锦涛. 阴离子和硫酸盐还原菌作用下管线钢腐蚀行为的研究进展[J]. 材料导报, 2018, 32(19): 3435-3443.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed