Please wait a minute...
材料导报  2021, Vol. 35 Issue (22): 22063-22071    https://doi.org/10.11896/cldb.20100229
  无机非金属及其复合材料 |
冲击荷载下纳米碳纤维混凝土的动态受压力学特性
夏伟1, 许金余1,2, 聂良学1, 王志航1, 黄哲1, 姚廒1
1 空军工程大学航空工程学院,西安 710038
2 西北工业大学力学与土木建筑学院,西安 710072
Dynamic Compressive Mechanical Properties of Carbon Nanofibers Reinforced Concrete under Impact Loading
XIA Wei1, XU Jinyu1,2, NIE Liangxue1, WANG Zhihang1, HUANG Zhe1, YAO Ao1
1 School of Aeronautical Engineering, Air Force Engineering University, Xi'an 710038, China
2 College of Mechanics and Civil Architecture, Northwest Polytechnic University, Xi'an 710072, China
下载:  全 文 ( PDF ) ( 8791KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探究纳米碳纤维混凝土的动态受压力学特性,本研究利用Φ100 mm分离式霍普金森压杆装置,分别对素混凝土及体积掺量为0.1%、0.2%、0.3%、0.5%的纳米碳纤维混凝土试件开展冲击压缩试验,对比分析了混凝土在5组不同应变率水平下混凝土的动态抗压强度、动态压缩变形和冲击韧性的变化特征。结果表明:各掺量下纳米碳纤维对混凝土动态抗压强度、动态压缩变形和冲击韧性均具有不同程度的增强作用。纳米碳纤维掺量为0.3%时对动态抗压强度的增强效果最佳;纳米碳纤维仅在0.2%掺量时对混凝土动态弹性模量表现为提升作用,其他掺量下反而使其动态弹性模量有所下降。素混凝土及纳米碳纤维混凝土的动态抗压强度、冲击韧性和动态弹性模量均随应变率水平的提高而逐渐增大,表现出显著的线性关系。动态峰值应变、极限应变虽整体上随应变率的上升呈递增趋势,但二者并不存在明显的线性相关性。适量纳米碳纤维的掺入能够发挥小尺寸效应及增强、阻裂作用,改善基体的微观结构,提升混凝土在冲击荷载作用下的动态受压力学特性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
夏伟
许金余
聂良学
王志航
黄哲
姚廒
关键词:  纳米碳纤维  改性混凝土  冲击荷载  动态受压力学特性  应变率效应    
Abstract: For the purpose of delving deep into the dynamic compressive mechanical properties of carbon nanofibers reinforced concrete, the plain concrete and concrete with four different fiber volume fractions (0.1%、0.2%、0.3%、0.5%) were developed, and the impact compression tests were conducted with Φ100 mm split Hopkinson pressure bar. The variation characteristics of dynamic compressive strength, dynamic compression deformation, impact toughness and dynamic elastic modulus of concrete under five different strain rates were compared and analyzed. The results show that the addition of carbon nanofibers can enhance the dynamic compressive strength, dynamic compression deformation and impact toughness of concrete, and when the content of carbon nanofibers is 0.3%, the best dynamic compressive strength is obtained. However, only when the content of carbon nanofibers is 0.2%, the dynamic elastic modulus of concrete is improved. The dynamic compressive strength, impact toughness and dynamic elastic modulus of plain concrete and carbon nanofibers reinforced concrete increase with the increase of strain rate, and show a significant linear relationship. Although the dynamic peak strain and ultimate strain increase with the increase of strain rate, there is no obvious linear correlation between them. Appropriate content of carbon nanofibers can play the role of reinforcement, crack resistance and small size effect, so as to improve the dynamic compressive mechanical properties of concrete under impact loading effectively.
Key words:  carbon nanofibers    modified concrete    impact loading    dynamic compressive properties    strain rate effect
出版日期:  2021-11-25      发布日期:  2021-12-13
ZTFLH:  TU528.572  
基金资助: 国家自然科学基金(51208507;51378497)
通讯作者:  xujinyuafeua@163.com   
作者简介:  夏伟,现为空军工程大学航空工程学院硕士研究生,主要从事建筑材料与防护工程新材料方面的研究。
许金余,空军工程大学教授,博士生导师;西北工业大学力学与土木建筑学院兼职教授、博士生导师。现主要从事结构工程与防护工程领域的教学与科研。
引用本文:    
夏伟, 许金余, 聂良学, 王志航, 黄哲, 姚廒. 冲击荷载下纳米碳纤维混凝土的动态受压力学特性[J]. 材料导报, 2021, 35(22): 22063-22071.
XIA Wei, XU Jinyu, NIE Liangxue, WANG Zhihang, HUANG Zhe, YAO Ao. Dynamic Compressive Mechanical Properties of Carbon Nanofibers Reinforced Concrete under Impact Loading. Materials Reports, 2021, 35(22): 22063-22071.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100229  或          http://www.mater-rep.com/CN/Y2021/V35/I22/22063
1 Liu J W, Wang C, Xiong G Q. Materials Reports B: Research Papers, 2020, 34(8),8090(in Chinese).
刘家文, 王冲, 熊光启. 材料导报:研究篇, 2020, 34(8),8090.
2 Umar M, Fathima N, Mohammed M S H S, et al. Biocatalysis and Agricultural Biotechnology, 2019, 20,101192.
3 Li Z. Durability and modification mechanism of nano-modified concrete. Master's Thesis, Harbin Institute of Technology, China, 2017(in Chinese).
李振. 纳米改性混凝土的耐久性及其机理研究. 硕士学位论文, 哈尔滨工业大学, 2017.
4 Hanumesh B M, Harish B A N, Ramana V. Materials Today: Procee-dings, 2018, 5(1),1147.
5 Zhang Y N, Li J C, Wang Q F, et al. Chinese Journal of Solid Mecha-nics, 2020, 41(2),170(in Chinese).
张亚楠, 李军超, 王庆菲, 等. 固体力学学报, 2020, 41(2),170.
6 Zhao J X. Hi-Tech Fiber and Application, 2003, 28(2),7(in Chinese).
赵稼祥. 高科技纤维与应用, 2003, 28(2),7.
7 Wang B M, Zhang Y, Han Y, et al. Materials Reports A: Review Papers, 2013(1),144(in Chinese).
王宝民, 张源, 韩瑜, 等. 材料导报:综述篇, 2013(1),144.
8 Sanchez F, Ince C. Composites Science and Technology, 2009, 69(7),1310.
9 Sanchez F, Sobolev K. Construction and Building Materials, 2010, 24(11),2060.
10 Gao D. Study on the new type of construction material—carbon nanofiber concrete. Ph.D. Thesis, Central South University, China, 2011(in Chinese).
高迪. 新型建筑材料—纳米级碳纤维混凝土性能研究. 博士学位论文, 中南大学, 2011.
11 Maria S, Konsta G, Chrysoula A, et al. Cement and Concrete Composites, 2014, 53,162.
12 Zhang Y. Research on the preparation and performance of carbon nanofibers reinforced cement-based composites. Master's Thesis, Dalian University of Technology, China, 2014(in Chinese).
张源. 纳米碳纤维水泥基复合材料的制备及其性能研究. 硕士学位论文, 大连理工大学, 2014.
13 Meng W, Khayat K H. Cement and Concrete Research, 2018, 105,64.
14 Jiang S, Gao X J, Yao B. Low Temperature Architecture Technology, 2015, 37(1),10(in Chinese).
姜山, 高小建, 姚斌. 低温建筑技术, 2015, 37(1),10.
15 Zhang X. Journal of Wuhan University of Technology (Transportation Science and Engineering), 2016, 40(2),335(in Chinese).
张璇. 武汉理工大学学报: 交通科学与工程版, 2016, 40(2),335.
16 Hao Y, Hao H. Construction and Building Materials,2013,48(48),521.
17 Ren W, Xu J. Journal of Materials in Civil Engineering, 2016, 29(4),04016244.
18 Sun X, Zhao K, Li Y, et al. Construction and Building Materials, 2018, 158,657.
19 Xu J Y, Zhao D H, Fan F L. Dynamic characteristics of fiber reinforced concrete, Northwest University of Technology Press, China, 2013(in Chinese).
许金余, 赵德辉, 范飞林. 纤维混凝土的动力特性, 西北工业大学出版社, 2013.
20 Chen X, Ge L, Zhou J, et al. Journal of Materials in Civil Engineering, 2015, 28(5),04015196.
21 Nie L X, Xu J Y, Wang H W, et al. Journal of Vibration and Shock, 2017, 36(14),126(in Chinese).
聂良学, 许金余, 王宏伟, 等. 振动与冲击, 2017, 36(14),126.
22 Ren W, Xu J, Su H. Fire and Materials, 2016, 40(5),738.
23 Song L, Hu S S. Explosion and Shock Waves,2005(4),368(in Chinese).
宋力, 胡时胜. 爆炸与冲击, 2005(4),368.
24 Zhang Y W, Yan L H, Li L F. Journal of Vibration and Shock, 2017, 36(8),92(in Chinese).
张玉武, 晏麓晖, 李凌锋. 振动与冲击, 2017, 36(8),92.
25 Hou X, Cao S, Zheng W, et al. Engineering Structures, 2018, 169,119.
26 Wang H L, Li Q B. Journal of Hydraulic Engineering, 2006, 37(8), 958(in Chinese).
王海龙, 李庆斌. 水利学报, 2006, 37(8),958.
27 Li S, Lajtai E Z. Mechanics of Materials, 1998, 30(3),243.
28 Meng B X, Xu J Y, Peng G. Acta Materiae Compositae Sinica, 2019, 36(10), 238(in Chinese).
孟博旭, 许金余, 彭光. 复合材料学报, 2019, 36(10),238.
[1] 王睿鑫, 唐宇, 李顺, 白书欣. 高熵合金动态载荷下变形机制的研究进展[J]. 材料导报, 2021, 35(17): 17001-17009.
[2] 赵昌方, 周志坛, 朱宏伟, 邢成龙, 任杰, 仲健林, 乐贵高. 锻造/层合碳纤维-环氧树脂复合材料压缩性能实验与仿真[J]. 材料导报, 2021, 35(12): 12209-12213.
[3] 王桂平, 喻伯鸣, 敖日格勒. 木质素基磁性多孔复合纳米碳纤维的制备及微波吸收性能[J]. 材料导报, 2020, 34(20): 20159-20164.
[4] 冯振宇, 李恒晖, 刘义, 解江, 牟浩蕾, 惠旭龙, 舒挽. 中低应变率下7075-T7351铝合金本构与失效模型对比[J]. 材料导报, 2020, 34(12): 12088-12093.
[5] 胡俊, 任建伟, 王爱国, 吴德义. 非线性梯度胞元分布蜂窝材料的冲击力学响应[J]. 材料导报, 2019, 33(24): 4066-4071.
[6] 岳承军, 余红发, 麻海燕, 章艳, 梅其泉, 达波. 全珊瑚海水混凝土动态冲击性能试验研究[J]. 材料导报, 2019, 33(16): 2697-2703.
[7] 胡俊, 任建伟, 马巍, 刘建华, 王爱国. 冲击荷载下含随机缺陷的梯度蜂窝材料的力学性能[J]. 材料导报, 2019, 33(16): 2777-2784.
[8] 梁宁慧,杨鹏,刘新荣,钟杨,郭哲奇. 高应变率下多尺寸聚丙烯纤维混凝土动态压缩力学性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 288-294.
[9] 张文华, 陈振宇. 超高性能混凝土动态冲击拉伸性能研究*[J]. CLDB, 2017, 31(23): 103-108.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed