Please wait a minute...
材料导报  2020, Vol. 34 Issue (12): 12088-12093    https://doi.org/10.11896/cldb.19060216
  金属与金属基复合材料 |
中低应变率下7075-T7351铝合金本构与失效模型对比
冯振宇1, 李恒晖1, 刘义1, 解江1, 牟浩蕾1, 惠旭龙2, 舒挽2
1 中国民航大学适航学院,天津 300300
2 中国飞机强度研究所结构冲击动力学航空科技重点实验室,西安 710065
Comparison of Constitutive and Failure Models of 7075-T7351 Alloy at Intermediate and Low Strain Rates
FENG Zhenyu1, LI Henghui1, LIU Yi1, XIE Jiang1, MOU Haolei1, XI Xulong2, SHU Wan2
1 College of Airworthiness, Civil Aviation University of China, Tianjin 300300, China
2 Aviation Key Laboratory of Science and Technology on Structures Impact Dynamics, Aircraft Strength Research Institute of China, Xi'an 710065, China
下载:  全 文 ( PDF ) ( 4589KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了标定航空铝合金材料本构并对比分析不同失效模型,以7075-T7351铝合金平板试样为研究对象,分别进行准静态拉伸试验和动态拉伸试验,获得其在100 s-1以内中低应变率下的力学性能。采用Johnson-Cook本构模型、Swift本构模型、Hartley和Srinivasan本构模型对材料塑性应变强化力学行为进行表征,并采用最大塑性应变失效准则、Johnson-Cook失效模型与表格式Johnson-Cook失效模型进行动态拉伸仿真,对比分析不同失效模型的仿真精度。结果表明,在100 s-1内的中低应变率下,7075-T7351铝合金的流动应力存在较弱的应变率效应,失效应变最大增量为16.8%;三种本构模型均可准确表征铝合金塑性应变强化力学行为;表格式Johnson-Cook模型的动态拉伸仿真结果与试验吻合最好,其塑性失效应变误差均小于4%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
冯振宇
李恒晖
刘义
解江
牟浩蕾
惠旭龙
舒挽
关键词:  中低应变率  动态力学性能  本构关系  失效模型  应变率效应    
Abstract: To calibrate the material constitutive of aluminum alloy and compare the different simulation failure models, the quasi-static tensile tests and dynamic tensile tests for Al 7075-T7351 specimens were carried out to obtain the material mechanical properties at intermediate and low strain rates within 100 s-1. The Johnson-Cook constitutive model, Swift constitutive model and Hartley and Srinivasan constitutive model were used to characterize the plastic strain-enhanced mechanical behavior of aluminum alloy material. The dynamic tensile simulations were conducted by using the maximum plastic strain failure criterion, Johnson-Cook model, and tabulated Johnson-Cook model, and the simulated accuracy of three failure models were compared and analyzed. The results showed that the flow stress of Al 7075-T7351 had a weak strain rate effect, and the maximum increment of failure strain was 16.8% at the intermediate and low strain rate within 100 s-1. Three constitutive models could accurately characterize the plastic strain-enhanced mechanical behavior of aluminum alloy. The dynamic tensile simulation result using tabulated Johnson-Cook model was in the best agreement with experimental result, and the plastic failure strain error was less than 4%.
Key words:  intermediate and low strain rates    dynamic mechanical properties    constitutive relation    failure model    strain rate effect
                    发布日期:  2020-05-29
ZTFLH:  O347.1  
基金资助: 航空科学基金项目(2017ZD67002);天津市教委科研计划项目(2019KJ135)
通讯作者:  caucstructure@163.com   
作者简介:  冯振宇,博士,中国民航大学教授,硕士研究生导师,现为工信部民航局民用航空器适航审定技术与管理研究中心副主任。主要从事航空器适航审定技术、飞机结构强度等研究工作。1987年获得西北工业大学飞行器结构力学及强度工学学士学位,1990年获得西北工业大学固体力学工学硕士学位,1995年获得西北工业大学固体力学工学博士学位。近年来,先后主持、参与完成了多项大飞机重大专项子课题、民航局科技项目等。
引用本文:    
冯振宇, 李恒晖, 刘义, 解江, 牟浩蕾, 惠旭龙, 舒挽. 中低应变率下7075-T7351铝合金本构与失效模型对比[J]. 材料导报, 2020, 34(12): 12088-12093.
FENG Zhenyu, LI Henghui, LIU Yi, XIE Jiang, MOU Haolei, XI Xulong, SHU Wan. Comparison of Constitutive and Failure Models of 7075-T7351 Alloy at Intermediate and Low Strain Rates. Materials Reports, 2020, 34(12): 12088-12093.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19060216  或          http://www.mater-rep.com/CN/Y2020/V34/I12/12088
1 Guida M, Marulo F, Abrate S. Progress in Aerospace Sciences,2018,98,106.
2 Mou R K, Liu X C. Guide for evaluation and verification of the airframe structure and internal equipment design for civil aircraft, Northwestern Polytechnical University Press, China,2016(in Chinese).
牟让科,刘小川.民机机身结构和内部设施适坠性设计评估与验证指南,西北工业大学出版社,2016.
3 Li N, Li Y L, Guo W G. Acta Aeronautica et Astronautica Sinica,2008(4),903(in Chinese).
李娜,李玉龙,郭伟国.航空学报,2008(4),903.
4 Lee W S, Sue W C, Lin C F, et al. Journal of Materials Processing Technology,2000,100(1-3),116.
5 Yang T J. Manufacturing Automation,2016,38(11),28(in Chinese).
杨铁江.制造自动化,2016,38(11),28.
6 Xin G,Li S. Materials Science and Engineering,2019,472(1),012041.
7 Senthil K, Iqbal M A, Chandel P S, et al. International Journal of Impact Engineering,2017,108,171.
8 Zhang S F, Wei Z H, Wang X Y. Hot Working Technology,2016,45(11),148(in Chinese).
张素芬,魏志辉,王晓阳.热加工工艺,2016,45(11),148.
9 Xie C J, Tong M B, Liu F, et al. Journal of Vibration and Shock,2014,33(18),110(in Chinese).
谢灿军,童明波,刘富,等.振动与冲击,2014,33(18),110.
10 Karen E, Jackson, Edwin L, et al. Best practices for crash modeling and simulation: NASA/TM-2002-211944, Hampton, VA: NASA Langley Research Center,2002.
11 Jones N. International Journal of Crashworthiness,2001,6(1),7.
12 Gransden D I, Alderliesten, René. Development of a finite element model for comparing metal and composite fuselage section drop testing, International Journal of Crashworthiness,2017,22(4),401.
13 Karen E J, Edwin L F. Crash simulation of a vertical drop test of a b737 fuselage section with overhead bins and luggage, Hampton, VA: NASA Langley Research Center,2001.
14 Song Y, Horton B, Perino S, et al. International Journal of Crashworthiness, DOI: 10.1080/13588265.2018.1424683.
15 Liu X C, Guo J, Bai C Y. Chinese Journal of Aeronautics,2015,28(2),447.
16 Liu X C, Guo J, Sun X S, et al. Acta Aeronautica et Astronautica Sinica,2013,34(9),2130(in Chinese).
刘小川,郭军,孙侠生,等.航空学报,2013,34(9),2130.
17 Ren Y R, Xiang J W, Luo Z P, et al. Acta Aeronautica et Astronautica Sinica,2010,31(2),271(in Chinese).
任毅如,向锦武,罗漳平,等.航空学报,2010,31(2),271.
18 Feng Z Y, Xie J, Li H H, et al. Acta Aeronautica et Astronautica Sinica,2019,40(2),115(in Chinese).
冯振宇,解江,李恒晖,等.航空学报,2019,40(2),115.
19 Livermore Software Technology Corporation. LS-DYNA® KEYWORD USER'S MANUAL VOLUME II Material Models, LSTC: Livermore, CA,2017.
20 Johnson G R, Cook W H. Engineering Fracture Mechanics,1985,21(1),31.
21 Tom V. LS-DYNA® Aerospace Working Group *MAT_224 User Guide: A User Guide for *MAT_TABULATED_JOHNSON_COOK in LS-DYNA®, Connecticut: Central Connecticut State University,2017.
22 Bai C Y, Liu X C, Zhou S F, et al. Explosion and Shock Waves,2015,35(4),507(in Chinese).
白春玉,刘小川,周苏枫,等.爆炸与冲击,2015,35(4),507.
23 Federal Aviation Administration. Metallic materials properties development and standardization, MMPDS-12,2017.
24 Lai X H, Wang L, Li J, et al. Journal of Tsinghua University(Science and Technology),2017,57(5),504(in Chinese).
赖兴华,王磊,李洁,等.清华大学学报(自然科学版),2017,57(5),504.
[1] 孙杨,乔国富. 锈蚀钢筋与混凝土粘结性能研究综述[J]. 材料导报, 2020, 34(3): 3116-3125.
[2] 胡俊, 任建伟, 王爱国, 吴德义. 非线性梯度胞元分布蜂窝材料的冲击力学响应[J]. 材料导报, 2019, 33(24): 4066-4071.
[3] 岳承军, 余红发, 麻海燕, 章艳, 梅其泉, 达波. 全珊瑚海水混凝土动态冲击性能试验研究[J]. 材料导报, 2019, 33(16): 2697-2703.
[4] 梁宁慧,杨鹏,刘新荣,钟杨,郭哲奇. 高应变率下多尺寸聚丙烯纤维混凝土动态压缩力学性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 288-294.
[5] 张文华, 陈振宇. 超高性能混凝土动态冲击拉伸性能研究*[J]. CLDB, 2017, 31(23): 103-108.
[6] 袁飞洋, 万强, 张灿阳, 李旭. 磁流变弹性体力磁耦合本构关系的研究进展*[J]. 《材料导报》期刊社, 2017, 31(19): 1-12.
[7] 王月敏, 闫相桥, 李垚, 王滨生. 基于纳米压痕技术的本构关系反演分析进展*[J]. 《材料导报》期刊社, 2017, 31(17): 1-5.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed