Please wait a minute...
材料导报  2020, Vol. 34 Issue (12): 12094-12100    https://doi.org/10.11896/cldb.19050016
  金属与金属基复合材料 |
激光扫描速度对TC4合金表面激光熔覆复合涂层组织及性能的影响
谭金花1, 孙荣禄1,2, 牛伟1,2, 刘亚楠1, 郝文俊1
1 天津工业大学机械工程学院,天津 300387
2 天津市现代机电装备技术重点实验室,天津 300387
Effect of Laser Scanning Speed on Microstructure and Properties of TC4 Alloy Surface Laser Cladding Composite Coating
TAN Jinhua1, SUN Ronglu1,2, NIU Wei1,2, LIU Yanan1, HAO Wenjun1
1 School of Mechanical Engineering, Tianjin Polytechnic University, Tianjin 300387, China
2 Tianjin Key Laboratory of Advanced Mechatronics Equipment Technology, Tianjin 300387, China
下载:  全 文 ( PDF ) ( 20239KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 通过RFL-C1000锐科光纤激光器,选择不同的激光扫描速度在TC4合金表面制备TC4+Ni60/h-BN钛基复合涂层,利用SEM、XRD仪、EDS仪、显微硬度计、JA 2003数显电子精密天平、摩擦磨损试验机对复合涂层的组织、物相、硬度、磨损量、摩擦系数进行分析和测试,研究激光扫描速度对钛基复合涂层组织及性能的影响。实验结果表明,随着扫描速度的增加,熔覆层宽度、深度、稀释率逐渐减小,熔高呈现先增大后减小的趋势。不同激光扫描速度的熔覆层均由Ti2Ni、TiN0.3、TiC、TiB、α-Ti等物相组成。激光扫描速度较低时,增强相团聚区以网状形式分布在基底中,随着激光扫描速度的增加,熔覆层中各增强相形成块状相团聚区,以相互孤立的形式分布于基底中。提高激光扫描速度能够降低熔覆层磨损量和摩擦系数,并提高熔覆层硬度和耐磨性,但是过高的激光扫描速度会导致熔覆层出现气孔、裂纹等缺陷,还会影响熔覆层与基体的结合性能,因此综合考虑最佳激光扫描速度为10 mm/s。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谭金花
孙荣禄
牛伟
刘亚楠
郝文俊
关键词:  激光扫描速度  激光熔覆  钛合金  显微组织  硬度  耐磨性    
Abstract: The TC4+Ni60/h-BN Ti-based composite coatings were prepared on the surface of TC4 alloy by RFL-C1000 Raycus fiber laser with different laser scanning speeds. The microstructure, phase, hardness, wear mass loss and friction coefficient of the cladding coating were analyzed and tested by SEM, XRD, EDS, microhardness tester, JA 2003 digital display precision balance and friction wear tester. We studied the effect of laser scanning speed on the microstructure and properties of laser cladding coating. The experimental results showed that with the increase of scanning speed, the width, depth, and dilution rate of the laser cladding coating was decreased gradually, but the melting height first increased and then decreased. The cladding coatings with different laser scanning speed are composed of Ti2Ni, TiN0.3, TiC, TiB and α-Ti. When the laser scanning speed is low, the enhanced phase agglomeration area is distributed in the substrate by the form of a network. With the increase of scanning speed, the reinforcing phases in the cladding coating form a massive phase agglomeration zone, which is distributed in the substrate by an isolated form. Increasing the laser scanning speed can reduce the wear mass loss and friction coefficient of the cladding coating, improve the hardness and wear resistance of the cladding coating. However, excessive laser scanning speed can cause defects in the cladding coating, such as pores and cracks, which affects the bonding properties between the cladding coating and the substrate. So the optimal laser scanning speed is 10 mm/s.
Key words:  laser scanning speed    laser cladding    titanium alloy    microstructure    hardness    wear resistance
               出版日期:  2020-06-25      发布日期:  2020-05-29
ZTFLH:  TG174  
基金资助: 国家自然科学基金(51371125)
通讯作者:  rlsun@tjpu.edu.cn   
作者简介:  孙荣禄,天津工业大学教授,博士研究生导师,天津市金工学会副理事长,天津市热处理学会理事,中国机械工程学会失效分析分会专家,中国机械工程学会高级会员。1996年获哈尔滨工业大学材料加工工程专业工学硕士学位;2001年获哈尔滨工业大学材料学工学博士学位;2003年至2005年在天津大学从事博士后研究工作。2002年调入天津工业大学机械电子学院工作。1997年晋升为副教授,2003年晋升为教授,2006年被聘为博士研究生导师。孙荣禄教授主要从事金属材料表面强化和激光材料加工方面的教学和科研工作。先后主持和参加了天津市自然科学基金项目、航天基金项目和武器装备预研项目等多项省部级和企业委托项目。所承担的“激光快速凝固TiC-Ni复合涂层的微观结构和耐磨性能研究”获2005年度天津市自然科学奖,申请国家发明专利两项。孙荣禄教授先后在 Surface and Coating TechnologyTransactions of Nonferrous Metals Society of China、《中国激光》《摩擦学报》《硅酸盐学报》《材料热处理学报》《焊接学报》《稀有金属材料与工程》等国内外专业学术期刊上发表学术论文50余篇,其中30余篇被SCI和EI收录。
谭金花,天津工业大学机械工程学院硕士研究生,主要研究方向为金属材料表面强化和激光材料加工。
引用本文:    
谭金花, 孙荣禄, 牛伟, 刘亚楠, 郝文俊. 激光扫描速度对TC4合金表面激光熔覆复合涂层组织及性能的影响[J]. 材料导报, 2020, 34(12): 12094-12100.
TAN Jinhua, SUN Ronglu, NIU Wei, LIU Yanan, HAO Wenjun. Effect of Laser Scanning Speed on Microstructure and Properties of TC4 Alloy Surface Laser Cladding Composite Coating. Materials Reports, 2020, 34(12): 12094-12100.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19050016  或          http://www.mater-rep.com/CN/Y2020/V34/I12/12094
1 Boyer R R. Materials Science & Engineering,1996,213,103.
2 Huang Z H, Qu H L, Deng C, et al. Materials Review A: Review Papers,2011,25(1),102(in Chinese).
黄张洪,曲恒磊,邓超,等.材料导报:综述篇,2011,25(1),102.
3 Niu W, Sun R L. Materials Review,2006,20(7),58(in Chinese).
牛伟,孙荣禄.材料导报,2006,20(7),58.
4 Farayibi P K, Folkes J, Clare A, et al. Surface and Coatings Technology,2011,206,2.
5 Zhang S, Zhang C H, Kang Y P, et al. The Chinese Journal of Nonferrous Metals,2001(6),1026(in Chinese).
张松,张春华,康煜平,等.中国有色金属学报,2001(6),1026.
6 Li H C, Wang D G, Chen C Z, et al. Colloids and Surface B: Biointerfa-ces,2015,127,15.
7 Weng F, Yu H J, Chen C Z, et al. Journal of Alloys and Compounds,2017,692,989.
8 Kobryn P A, Moore E H, Semiatin S L, et al. Scripta Materialia,2000,43,299.
9 Zhu G X, Zhang A F, Li D C. Chinese Journal of Lasers,2010,37(1),296(in Chinese).
朱刚贤,张安峰,李涤尘.中国激光,2010,37(1),296.
10 Sun R L, Liu Z Y, Niu W, et al. Chinese Journal of Lasers,2008(11),1741(in Chinese).
孙荣禄,刘智勇,牛伟,等.中国激光,2008(11),1741.
11 Zhang S Y, Liu X, Chen J, et al. Rare Metal Materials and Engineering,2007(10),1839(in Chinese).
张霜银,林鑫,陈静,等.稀有金属材料与工程,2007(10),1839.
12 Zhang Q M, Zhong M L, Yang S, et al. Transactions of the China Wel-ding Institution,2001(4),51(in Chinese).
张庆茂,钟敏霖,杨森,等.焊接学报,2001(4),51.
13 Sun R L, Guo D Z, Guo L X, et al. Optical Technique,2001(1),34(in Chinese).
孙荣禄,杨德庄,郭立新,等.光学技术,2001(1),34.
14 Li J N. Laser cladding technology and application, Chemical Industry Press, China,2015(in Chinese).
李嘉宁.激光熔覆技术及应用,化学工业出版社,2015.
15 Liang Y J, Che Y C, Liu X X. Inorganic thermodynamic data sheet, Northeastern University Press, China,1993(in Chinese).
梁英教,车荫昌,刘晓霞.无机物热力学数据手册,东北大学出版社,1993.
16 Liu Y N, Sun R L, Zhang T G. Heat Treatment of Metals,2018,43(9),16(in Chinese).
刘亚楠,孙荣禄,张天刚.金属热处理,2018,43(9),16.
17 Ivasishin O M, Markovsky P E, Savvakin D G, et al. Journal of Materials Processing Technology,2019,269,172.
18 Liu Y N, Sun R L, Niu W, et al. Chinese Journal of Lasers,2019,46(1),157(in Chinese).
刘亚楠,孙荣禄,牛伟,等.中国激光,2019,46(1),157.
19 Borisova. Titanium metallography, National Defense Industry Press, China,1980(in Chinese).
鲍利索娃.钛合金金相学,国防工业出版社,1980.
20 Li W, Guan Z Z. Transactions of Metal Heat Treatment,1997(2),47(in Chinese).
李文,关振中.金属热处理学报,1997(2),47.
21 Tjong S C, Ma Z Y. Materials Science & Engineering R-Reports,2000,29(3),49.
22 Sun R L, Niu W, Lei Y W, et al. Transactions of Materials and Heat Treatment,2014,35(6),157(in Chinese).
孙荣禄,牛伟,雷贻文,等.材料热处理学报,2014,35(6),157.
23 Kumar K S, Van S H, Suresh S. Acta Materialia,2003,51(19),5743.
24 Xu R B, Cui L S. Materials Review,2008,22(5),55(in Chinese).
许仁波,崔立山.材料导报,2008,22(5),55.
25 Liu X B, Meng X J, Liu H Q, et al. Materials and Design,2014,55,404.
[1] 吴学志, 尹邦跃, 郑新海. 碳纳米管增强UO2燃料力学性能研究[J]. 材料导报, 2020, 34(Z1): 153-156.
[2] 李毅, 赵永庆, 曾卫东. 航空钛合金的应用及发展趋势[J]. 材料导报, 2020, 34(Z1): 280-282.
[3] 任军帅, 李欣琳, 肖松涛, 周立鹏, 舒滢, 张英明. 新型Ti-Al-Zr-Nb-Mo-Si钛合金热变形行为及基于BP神经网络模型的本构关系研究[J]. 材料导报, 2020, 34(Z1): 283-288.
[4] 朱雪峰, 周瑜, 樊凯, 王柯. TC18钛合金固溶过程中黑斑组织的形成机理[J]. 材料导报, 2020, 34(Z1): 289-292.
[5] 郝芳, 辛社伟, 毛友川, 楼美琪, 周伟, 杜予晅, 王凯旋, 屈磊, 冯勇. 钛合金在装甲领域的应用综述[J]. 材料导报, 2020, 34(Z1): 293-296.
[6] 江雯, 蒋璐瑶, 黄伟九, 郭非, 董海澎. 退火处理对搅拌摩擦加工LZ91双相镁锂合金微观组织及力学性能的影响[J]. 材料导报, 2020, 34(Z1): 307-311.
[7] 张宝庆, 庞壮, 韦赟杰, 于硕. 中阶梯光栅厚铝膜纳米压痕硬度尺寸效应测试与分析[J]. 材料导报, 2020, 34(Z1): 341-344.
[8] 谢兴飞, 曲敬龙, 杜金辉. GH4720Li镍基合金混晶组织对高温持久性能的影响[J]. 材料导报, 2020, 34(Z1): 375-379.
[9] 吴韬, 段佳伟, 陈小明, 俞立涛, 陈云祥, 石淑琴. 合金元素对激光熔覆高熵合金涂层影响的研究进展[J]. 材料导报, 2020, 34(Z1): 413-419.
[10] 蒋三生, 梁立帅, 舒凤远. 45钢表面激光熔覆Co基合金覆层工艺优化[J]. 材料导报, 2020, 34(Z1): 448-451.
[11] 李田雨, 刘小艳, 张玉梅, 熊传胜, 曹文凯, 李伟华. 海水海砂制备活性粉末混凝土的碳化机理[J]. 材料导报, 2020, 34(8): 8042-8050.
[12] 谢锐, 吕铮, 卢晨阳, 王晴, 徐世海, 刘春明. 热等静压温度对14Cr-ODS钢显微组织及力学性能的影响[J]. 材料导报, 2020, 34(8): 8141-8148.
[13] 周宇, 钱丽华, 刘天宇, 张泉, 吕知清. 冷轧板条马氏体组织与力学性能研究[J]. 材料导报, 2020, 34(8): 8154-8158.
[14] 王婷玥, 邢书明, 敖晓辉, 王营. 压力对挤压铸造E级钢低温冲击韧性的影响[J]. 材料导报, 2020, 34(6): 6138-6143.
[15] 郭晋昌, 石玗, 耿培彪, 朱明. 激光维持等离子体钛合金表面渗氮研究进展[J]. 材料导报, 2020, 34(5): 5109-5114.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed