Please wait a minute...
材料导报  2021, Vol. 35 Issue (12): 12087-12091    https://doi.org/10.11896/cldb.20040049
  无机非金属及其复合材料 |
碳化龄期对水泥砂浆动态力学特性影响试验研究
汪海波, 徐成, 王梦想, 徐颖
安徽理工大学土木建筑学院,淮南 232001
Experimental Study on Effect of Carbonization Age on Dynamic Mechanical Properties of Cement Mortar
WANG Haibo, XU Cheng, WANG Mengxiang, XU Ying
School of Civil Engineering and Architecture,Anhui University of Science and Technology,Huainan 232001, China
下载:  全 文 ( PDF ) ( 3163KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了研究碳化龄期对混凝土动态力学性能的影响,利用碳化试验箱对水泥砂浆试件环向圆周面进行0 d、3 d、7 d、14 d、28 d的碳化模拟,并采用直径Φ50 mm分离式Hopkinson压杆(SHPB)试验装置开展不同碳化龄期的水泥砂浆冲击压缩试验,得到了试件动态抗压强度、动态弹性模量、动态峰值应变和破碎块度与碳化龄期的关系。结果表明:由于碳化过程生成的CaCO3结晶充填水泥砂浆表面的孔隙形成碳化层,砂浆试件的动态抗压强度、动态弹性模量随着碳化龄期的延长而增加,从0 d到28 d,动态抗压强度平均值增加了2.06倍、动态弹性模量平均值提高了65.24%;随碳化深度的增加,碳化层的约束作用逐渐显现,碳化龄期14 d和28 d的试件表现出一定的应力增强效应;碳化层的脆性破坏导致其约束作用失效,使得试件的峰值应变随碳化龄期的延长而减小,降低了试件的变形能力,试件破坏形态随碳化龄期的延长逐渐趋于大块,冲击后试件大于7 mm的碎块质量比由碳化龄期0 d的47.65%增加到碳化龄期28 d的94.90%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汪海波
徐成
王梦想
徐颖
关键词:  SHPB  碳化  水泥砂浆  动态力学特性    
Abstract: In order to study the effect of carbonation age on concrete dynamic mechanical properties, carbonization simulation of circumferential direction on cement mortar specimens were carried out by carbonization test box, the age of carbonization is 0 d, 3 d, 7 d, 14 d and 28 d respectively. And with diameter of 50 mm SHPB test device, the shock compression test was did. The relationships of dynamic compressive strength, dynamic elastic modulus, dynamic peak strain and fragmentation degree with the age of carbonization are obtained. The results show that the dynamic compressive strength and dynamic elastic modulus of mortar specimens increase with the growth of the carbonation age due to the carbo-nation layer formed by the CaCO3 crystals on the surface of cement mortar. From 0 d to 28 d, the dynamic compressive strength increases by 2.06 times and the dynamic elastic modulus increases by 65.24%. With the increase of carbonization depth, the restraint effect of carbonation la-yer gradually appears, and the specimens with carbonation age of 14 d and 28 d show a certain stress enhancement effect. Carbide layer brittle failure, leading to the constraint function fails, the peak strain of the specimen decrease with the increase of carbonization age, reduce the deformation capacity of the specimens, specimen failure pattern with the growth of the age gradually become large, carbide after impact specimen is greater than 7 mm pieces quality than by carbonization age 0 d increased from 47.65% to 94.90% of carbonization age 28 d.
Key words:  SHPB    carbonization    cement mortar    dynamic mechanical characteristics
               出版日期:  2021-06-25      发布日期:  2021-07-01
ZTFLH:  TU528  
基金资助: 安徽省自然科学基金项目(2008085ME163);安徽省重点研究与开发计划(201904a07020081);安徽省高等学校自然科学研究项目(KJ2018A0074)
通讯作者:  wanghb_aust@163.com   
作者简介:  汪海波,工学博士、博士后,现任安徽理工大学副教授,硕士研究生导师。主要从事地下工程、爆破工程与冲击动力学等方面的科研和教学工作。获省部级科技成果奖8项,授权发明专利和实用新型专利10项,参编教材1部,发表论文30余篇。
引用本文:    
汪海波, 徐成, 王梦想, 徐颖. 碳化龄期对水泥砂浆动态力学特性影响试验研究[J]. 材料导报, 2021, 35(12): 12087-12091.
WANG Haibo, XU Cheng, WANG Mengxiang, XU Ying. Experimental Study on Effect of Carbonization Age on Dynamic Mechanical Properties of Cement Mortar. Materials Reports, 2021, 35(12): 12087-12091.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040049  或          http://www.mater-rep.com/CN/Y2021/V35/I12/12087
1 Dong F Y, Zheng S S, Song M C, et al. Materials Reports A:Review Papers, 2018, 32(3), 496 (in Chinese).
董方园,郑山锁,宋明辰,等. 材料导报:综述篇,2018,32(3),496.
2 Jukka Lahdensivu, Elina Lahdensivu, Arto Köliö.Nordic Concrete Research, 2019, 60(1), 1.
3 Shen X H, Jiang W Q, Hou D S, et al. Cement and Concrete Composites, 2019, 104. dol,10.1016/j. cemconcomp. 2019. 103402
4 Tang Y J, Li W Q. Journal of Tongji University (Natural Science), 2007, 35(1), 1 (in Chinese).
汤永净,李文卿. 同济大学学报(自然科学版),2007,35(1),1.
5 Xu S H, Li A B, Cui H P, et al. Journal of Harbin Institute of Technology, 2015, 47(12), 57. (in Chinese).
徐善华,李安邦,崔焕平,等.哈尔滨工业大学学报,2015,47(12),57.
6 Ma H Q, Yi C, Zhu H G, et al. Materials Reports B:Research Papers, 2018, 32(7), 2390 (in Chinese).
马宏强,易成,朱红光,等. 材料导报:研究篇,2018,32(7),2390.
7 Zhu H, Liu A, Yu Y. Journal of Materials Science and Engineering, 2018, 36(4), 600(in Chinese).
朱涵,刘昂,于泳. 材料科学与工程学报,2018,36(4),600.
8 Huang B F,Xiao Y. China Civil Engineering Journal, 2021, 54(2, 30(in Chinese).
黄宝锋,肖岩. 土木工程学报,2021,54(2),30.
9 JG/T 247-2009 Carbonation test chamber of concrete, China Standard Press, China, 2009 (in Chinese).
JG/T 247-2009 混凝土碳化试验箱,中国标准出版社,2009.
10 GB/T50082-2009 Standard for test methods of long term performance and durability of ordinary concrete, China Architecture & Building Press, China,2009 (in Chinese).
JG/T 247-2009普通混凝土长期性能和耐久性能试验方法标准,中国建筑工业出版社,2009.
11 Sun B, Mao S Y, Wang J X, et al. Building Structure, 2019, 49(9), 111 (in Chinese).
孙彬,毛诗洋,王景贤,等. 建筑结构,2019,49(9),111.
12 Claisse Peter A., El-Sayad Hanaa,Shaaban Ibrahim G. ACI Materials Journal, 1999, 96(3), 378.
13 Lu F Y, Chen R, Lin Y L, et al.Hopkinson bar experiment technology, Science Press, China, 2013(in Chinese).
卢芳云,陈荣,林玉亮,等. 霍普金森杆实验技术,科学出版社,2013.
14 Liang Y, Luo X Y, Shi Y. Journal of Hunan University (Natural Sciences), 2016, 43(9), 43 (in Chinese).
梁岩,罗小勇,史艳. 湖南大学学报(自然科学版),2016,43(9),43.
15 Geng O, Yuan G L. Industrial Construction, 2006(1), 44 (in Chinese).
耿欧,袁广林. 工业建筑,2006(1),44.
[1] 王雅思, 郑建岚, 游帆. 再生骨料强化方法研究进展[J]. 材料导报, 2021, 35(5): 5053-5061.
[2] 李爽, 刘和鑫, 杨永, 李青, 张之璐, 朱效宏, 杨长辉, 杨凯. 碱激发矿渣/偏高岭土复合胶凝材料干燥收缩机理研究[J]. 材料导报, 2021, 35(4): 4088-4091.
[3] 代黎明, 肖国庆, 丁冬海. 含碳耐火材料防氧化技术综述[J]. 材料导报, 2021, 35(3): 3057-3066.
[4] 郦其乐, 杨勇, 魏玉全, 刘盟, 周洪军, 霍同林, 黄政仁. 不同B/C摩尔比碳化硼薄膜的光学性能[J]. 材料导报, 2021, 35(2): 2006-2011.
[5] 杨荣周, 徐颖, 陈佩圆, 王佳. SHPB劈裂试验下橡胶水泥砂浆的动态力学、能量特性及破坏机理试验研究[J]. 材料导报, 2021, 35(10): 10062-10072.
[6] 王运, 张昌明, 张昱. 航空Al7050合金的静动态力学特性研究及JC本构模型构建[J]. 材料导报, 2021, 35(10): 10096-10102.
[7] 孙强, 黄苏起, 蔡著文, 党卫东, 吴晓春. 两种热冲压模具用钢的抗拉毛性能[J]. 材料导报, 2021, 35(10): 10152-10157.
[8] 郭翠霞, 吴张永, 谢文玲, 张建平, 张莲芝, 邹应辉. 基于SiC纳米工作液和常规乳化液的高速走丝电火花线切割加工表面特性的对比研究[J]. 材料导报, 2021, 35(10): 10166-10170.
[9] 付振东, 赵健, 戴叶婧, 梁骥, 刘荣正. 碳化硅陶瓷烧结助剂的作用机制与研究进展[J]. 材料导报, 2021, 35(1): 1077-1081.
[10] 卞立波, 陶志. 不同吸附性粉体对混凝土性能的影响[J]. 材料导报, 2020, 34(Z2): 246-249.
[11] 宋亢, 坚增运, 王渭中, 陈焱. SLM成形10%SiC颗粒增强铝基复合材料的工艺优化及性能[J]. 材料导报, 2020, 34(Z2): 376-380.
[12] 张绍康, 王茹, 徐玲琳, 钟世云, 张国防, 王培铭. 羟乙基甲基纤维素改性水泥砂浆的物理力学性能和孔隙率[J]. 材料导报, 2020, 34(Z2): 607-611.
[13] 黄青武, 吴越, 宋武林, 丁雨葵. 碳纤维的电纺制备及结构表征[J]. 材料导报, 2020, 34(Z1): 164-168.
[14] 王梦宇, 李崇智, 牛振山. 渗透结晶型防护剂对混凝土防水抗蚀性能的影响[J]. 材料导报, 2020, 34(Z1): 185-188.
[15] 李文杰, 陈宜虎, 范理云, 吕海波. 钙质砂水泥砂浆力学性能试验研究及微观结构分析[J]. 材料导报, 2020, 34(Z1): 224-228.
[1] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Tao YAN,Guimin LIU,Shuo ZHU,Linfei DU,Yang HUI. Current Research Status of Electromagnetic Rail Materials Surface Failure and Strengthen Technology[J]. Materials Reports, 2018, 32(1): 135 -140 .
[4] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[5] Dingfa FU,Yu LENG,Wenli GAO. Effect of Microalloying Element Niobium on the Strength and Toughness of Low Carbon Cast Steels[J]. Materials Reports, 2018, 32(2): 237 -242 .
[6] YU Yan, MA Fengsen, LU Jiajun, CHEN Haibo. In Vitro Cytotoxicity Evaluation of Cellulose Absorbable Hemostatic Materials[J]. Materials Reports, 2018, 32(6): 874 -880 .
[7] SHI Yuanji, WU Xiaochun, MIN Na. Thermal Stability Mechanism of Fe-Cr-Mo-W-V Hot Working Die Steel[J]. Materials Reports, 2018, 32(6): 930 -936 .
[8] BAI Yuanrui, MA Jianzhong, LIU Junli, BAO Yan, CUI Wanzhao, HU Tiancun, WU Duoduo. Construction of Silver Film by Colloidal Crystal Template and Its Micro-discharge Inhibition Performance[J]. Materials Reports, 2018, 32(4): 515 -519 .
[9] LI Yong, ZHU Jing, WANG Ying, LI Huan, ZHAO Yaru. Formation Mechanism of Band Structure in Directionally Solidified Cu-0.33Cr-0.1Ti Hypoeutectic Alloy[J]. Materials Reports, 2018, 32(4): 602 -605 .
[10] LI Hui, CHEN Jiayong, DUAN Xiaoge, JIANG Haitao. Stability and TRIP Effect of Retained Austenite of Medium Manganese Q&P Steel[J]. Materials Reports, 2018, 32(4): 611 -615 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed