Please wait a minute...
材料导报  2021, Vol. 35 Issue (10): 10166-10170    https://doi.org/10.11896/cldb.20010037
  金属与金属基复合材料 |
基于SiC纳米工作液和常规乳化液的高速走丝电火花线切割加工表面特性的对比研究
郭翠霞1,2, 吴张永1, 谢文玲2, 张建平2, 张莲芝1, 邹应辉2
1 昆明理工大学机电工程学院,昆明 650500
2 四川轻化工大学机械工程学院,宜宾 644000
A Comparative Study on Surface Characteristics of HSWEDM Based on SiC Nanofluids and Conventional Emulsions
GUO Cuixia1,2, WU Zhangyong1, XIE Wenling2, ZHANG Jianping2, ZHANG Lianzhi1, ZOU Yinghui2
1 Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, China
2 Faculty of Mechanical Engineering, Sichuan University of Science & Engineering, Yibin 644000, China
下载:  全 文 ( PDF ) ( 3558KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以SiC纳米液为工作介质,研究高速走丝电火花线切割加工表面的特性。采用两步法制备SiC纳米流体,并与乳化液或去离子水混合作为纳米工作介质,多次切割SKH-51高速钢。利用扫描电子显微镜(SEM)和原子力显微镜(AFM)分析表面微观形貌和纳米面粗糙度,利用Taylor-Hobson-50粗糙度仪测量宏观表面粗糙度,利用能谱仪(EDS)检测表层的化学成分。SiC/乳化液纳米工作液、常规乳化液、SiC/去离子水纳米工作液三种不同介质加工样品的纳米面粗糙度Sq分别为64.7 nm、135 nm和22.8 nm,重铸层厚度分别为11 μm、16 μm、14 μm,宏观表面粗糙度Ra分别为1.464 0 μm、1.792 3 μm和1.314 9 μm。与常规乳化液加工相比,SiC纳米工作液均无明显的电极丝放电痕迹,但SiC/去离子水纳米工作液有明显的黑白条纹,表面光洁度劣于SiC/乳化液纳米工作液。SiC纳米工作液加工的表面均未呈现蜂窝状,陨石坑大而浅,微观裂纹均不明显,孔洞呈细针孔状,其中SiC/乳化液纳米工作液加工的表面针孔更细而少。SiC纳米工作液能有效提高高速走丝电火花线切割加工表面的质量。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭翠霞
吴张永
谢文玲
张建平
张莲芝
邹应辉
关键词:  高速走丝电火花线切割  碳化硅纳米流体  SKH-51高速钢  表面微观形貌  重铸层  表面粗糙度    
Abstract: The purpose of this study is to investigate the surface performance of high speed wire cut electrical discharge machining(HSWEDM) using SiC nanometer liquid as the working medium. SiC nanofluids were prepared by using a two-step process, which was mixed with emulsion or deionized water as the nanometer working medium, and SKH-51 high speed steel was cut several times on HSWEDM. Microstructure and nanometer surface roughness of the recast layer were evaluated by SEM and AFM. Macro surface roughness was measured by Taylor-Hobson-50 roughness meter, and chemical composition of the surface was detected by EDS. The results show that the nanometer surface roughness Sq of the SiC/emulsion nanometer working fluid and conventional emulsion and SiC/deionized water nanometer working fluid were 64.7 nm, 135 nm and 22.8 nm, respectively. And the thickness of the recast layer was 11 μm, 16 μm and 14 μm, respectively. And the macroscopic surface roughness Ra was 1.464 0 μm, 1.792 3 μm and 1.314 9 μm, respectively. Compared with conventional emulsion processing, the SiC nanometer wo-rking fluid had no obvious trace of electrode wire discharge, but the SiC/deionized water nanometer working fluid had obvious black and white stripes, and the surface finish was not better than that of the SiC/emulsion nanometer working fluid. The surface processed using SiC nanometer working fluid showed no honeycomb, and craters were large and shallow, and microcracks were not significant, and pinholes were fine,between the two,the surface processed by SiC/emulsion nanometer working fluid had finer and fewer pinholes. The results show that the surface quality of HSWEDM was improved by using SiC nanometer liquid as working medium.
Key words:  high speed wire cut electrical discharge machining(HSWEDM)    SiC nanofluids    SKH-51 high speed steel    surface microstructure    recast layer    surface roughness
               出版日期:  2021-05-25      发布日期:  2021-06-04
ZTFLH:  TG147  
基金资助: 四川轻化工大学省级大学生创新创业训练计划项目(S202010622097;cx2020182)
通讯作者:  zhyongwu63@163.com   
作者简介:  郭翠霞,四川轻化工大学副教授,硕士研究生导师。2018年入学,在昆明理工大学机电工程学院攻读博士学位,主要围绕纳米材料开展电火花线切割加工表面改性基础理论与应用的研究。近年来,发表论文20余篇,申请国家发明专利8项,其中授权4项。
吴张永,昆明理工大学机电工程学院功能流体应用与矿山机电工程研究所所长。1963年5月生,1996年获机械制造及自动化专业硕士学位,1996年破格评为高级工程师,2004年被评为教授。主要研究方向为:水基液压传动技术、电液数字控制技术、新型液压介质、元件及系统。近年来,主持及参与完成科研项目20余项,发表论文50余篇,参编教材1部、专著1部,获云南省科技进步一等奖1项、三等奖2项,获发明专利13项、实用新型专利60余项。
引用本文:    
郭翠霞, 吴张永, 谢文玲, 张建平, 张莲芝, 邹应辉. 基于SiC纳米工作液和常规乳化液的高速走丝电火花线切割加工表面特性的对比研究[J]. 材料导报, 2021, 35(10): 10166-10170.
GUO Cuixia, WU Zhangyong, XIE Wenling, ZHANG Jianping, ZHANG Lianzhi, ZOU Yinghui. A Comparative Study on Surface Characteristics of HSWEDM Based on SiC Nanofluids and Conventional Emulsions. Materials Reports, 2021, 35(10): 10166-10170.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20010037  或          http://www.mater-rep.com/CN/Y2021/V35/I10/10166
1 Bai J C, Liu J C, Guo Y F, et al. Special processing, Mechanical Industry Press, China, 2018(in Chinese).
白基成,刘晋春,郭永丰,等.特种加工,机械工业出版社,2018.
2 Wu Haihui,Wang Tong,Wang Junqi. Springer London, 2019, 103(5), 2301.
3 Guo C X, Liu K, Li G D, et al. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(11), 1711(in Chinese).
郭翠霞,刘康,李贵东,等.机械科学与技术, 2018, 37(11),1711.
4 Zhang Yanzhen, Liu Yonghong, Shen Yang, et al. Journal of Materials Processing Technology, 2014, 214(5),1052.
5 Liu Z D. Electrical Machining and Die, 2010(3),11(in Chinese).
刘志东. 电加工与模具,2010(3),11.
6 Wang T, Lu X, Wang C Q,et al. Cemented Carbide, 2016,33(4),245(in Chinese).
王彤,卢鑫,王超群,等. 硬质合金,2016,33(4),245.
7 Wang J Q. Research on machining mechanism and experiments of high-speed WEDM in atmosphere and water mist media. Ph.D. Thesis, Harbin University of Science and Technology, China, 2018(in Chinese).
王俊棋.大气和水雾介质中往复走丝线切割加工机理及实验研究. 博士学位论文, 哈尔滨理工大学, 2018.
8 Yeakub A M, Asfana B, Abdul R M, et al. Key Engineering Materials, 2018, 775, 499.
9 Tahsin T Öpöz, Hamidullah Yasar, Ekmekci N, et al. Journal of Manufacturing Processes, 2018, 31,744.
10 Sanjeev Kumar,Rupinder Singh, Tejinder Paul Singh, et al. Journal of Materials Processing Technology, 2008, 209(8),3675.
11 Li L, Zhao L, Li Z Y, et al. Materials and Manufacturing Processes, 2016,32(1),1.
12 Kavade M V,Mohite S S,Unaune D R. Materials Today: Proceedings, 2019, 16, 398.
13 Cezar Augusto Oleinik Luzia,Carlos Augusto Henning Laurindo, Paulo César Soares, et al. Springer London, 2019, 103(1),15.
14 Kumar S S, Thrinadh J, Saurav D, et al. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40(7), 330.
15 Marashi H, Jafarlou D M, Sarhan A A D, et al. Precision Engineering, DOI: 10.1016/j.precisioneng.2016.05.010.
16 Kumar A, Mandal A, Dixit A R, et al. Advanced Manufacturing Processes, 2018, 33(9),986.
17 Mohal S, Kumar H, Kansal S K. Science of Advanced Materials,DOI: 10.1166/sam.2015.2380.
18 Yuan L. Basic process research on electrical discharge machining with ultrasonic vibration of dielectric fluid. Master's Thesis, Dalian University of Technology, China, 2017(in Chinese).
亓立.超声振动工作液复合电火花加工基础工艺的研究. 硕士学位论文,大连理工大学,2017.
19 Zhao L,Wang H C,Li L,et al. Manufacturing Automation,2015,37(23), 35(in Chinese).
赵林,王好臣,李丽,等.制造业自动化,2015,37(23),35.
20 Seong H, Kim G, Jeon J, et al. Materials, 2018, 11(6), 950.
21 Kim S, Tserengombo B, Choi S H, et al. International Communications in Heat and Mass Transfer, 2018, 91,95.
22 郭翠霞,吴张永,刘康,等. 中国专利, CN110000437A,2019.
23 Bülent Ekmekci, Yusuf Ersöz. Metallurgical and Materials Transactions B, 2012, 43(5), 1138.
24 Klocke F, Lung D, Antonoglou G, et al. Journal of Materials Processing Technology, 2004, 149(1-3), 191.
25 Guu Y H. Applied Surface Science, 2004, 242(3), 245.
[1] 金贺荣, 张钊瑞, 韩民峰, 井士涛, 赵丁选. 表面粗糙度对热轧不锈钢复合板界面质量的影响[J]. 材料导报, 2021, 35(8): 8151-8156.
[2] 金鑫源, 兰亮, 何博, 朱奥迪, 高双. 选区激光熔化成形金属零件表面粗糙度研究进展[J]. 材料导报, 2021, 35(3): 3168-3175.
[3] 梁静静, 张相召, 赵光辉, 刘桂武, 邵海成, 乔冠军. 磨削加工对Al2O3陶瓷表面质量与力学性能的影响[J]. 材料导报, 2020, 34(16): 16020-16024.
[4] 马英怡, 刘玉德, 石文天, 韩冬, 侯岩军. 芳纶纤维增强复合材料的微铣削与铣磨精加工[J]. 材料导报, 2020, 34(16): 16177-16181.
[5] 肖长江, 窦志强, 朱振东. 氧化铁刻蚀金刚石表面形貌的表征及形成机理[J]. 材料导报, 2020, 34(14): 14045-14050.
[6] 孙书兵, 刘艳松, 何小珊, 王锋, 何智兵, 黄景林, 刘磊. 空心微球上Al-W多层涂层的制备与表征[J]. 材料导报, 2018, 32(24): 4297-4302.
[7] 王毅, 王盼, 索红莉, 贾强, 卢东琪, 李怀洲, 吴海明. 哈氏合金电化学抛光工艺的研究*[J]. 《材料导报》期刊社, 2017, 31(2): 37-40.
[8] 余剑武, 胡其丰, 段文, 何利华, 沈湘. 电加工8418钢的能量分配与表面粗糙度模型*[J]. 《材料导报》期刊社, 2017, 31(14): 153-157.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed