Please wait a minute...
材料导报  2021, Vol. 35 Issue (10): 10096-10102    https://doi.org/10.11896/cldb.20060201
  金属与金属基复合材料 |
航空Al7050合金的静动态力学特性研究及JC本构模型构建
王运1, 张昌明1,2, 张昱1
1 陕西理工大学机械工程学院,汉中 723000
2 陕西省工业自动化重点实验室,汉中 723000
Study on Static and Dynamic Mechanical Properties of Aviation Al7050 Alloy and Construction of JC Constitutive Model
WANG Yun1, ZHANG Changming1,2, ZHANG Yu1
1 School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong 723000, China
2 Shaanxi Provincial Key Laboratory of Industrial Automation, Hanzhong 723000, China
下载:  全 文 ( PDF ) ( 3913KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了研究航空Al7050合金材料的静、动态力学特性,采用DNS100型电子万能试验机对航空Al7050合金进行了准静态压缩试验,并依据处理后的试验数据获得了室温准静态下的流动应力-应变曲线,然后采用带有同步组装系统的分离式霍普金森压杆(SHPB)装置对航空Al7050合金进行了不同温度、不同应变率下的动态压缩试验,并依据处理后的试验数据获得了不同温度、不同应变率下的流动应力-应变曲线,最后依据两次试验数据并采用最小二乘法构建了试验条件下的JC本构模型。结果表明:材料的流动应力随应变率的增加整体呈现增加的趋势,但温度高于400 ℃时,材料的流动应力随应变率的增加而减小;随应变的增加,流动应力表现出先呈线性增加,再缓慢增加,最后急剧下降的趋势;材料的流动应力和应变硬化指数随温度的升高而下降,且构建的JC本构模型能较好地预测塑性流动应力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王运
张昌明
张昱
关键词:  航空Al7050合金  静动态力学特性  分离式霍普金森压杆  JC本构模型    
Abstract: In order to study the static and dynamic mechanical properties of aeronautical Al7050 alloy, the quasi-static compression test of aeronautical Al7050 alloy was carried out with DNS100 electronic universal testing machine, and the flow stress-strain curve under the quasi-static room temperature was obtained according to the processed test data. Meanwhile, the dynamic compression test of aeronautical Al7050 alloy at different temperatures and strain rates were carried out by split Hopkinson pressure bar (SHPB) device with synchronous assembly system, and the flow stress-strain curves at different temperatures and strain rates were obtained according to the test data. Finally, the JC constitutive model under the test conditions was constructed by using the least square method based on the two-test data. The results show that the flow stress increases with the increase of strain rate, but when the temperature is higher than 400 ℃, the flow stress decreases with the increase of strain rate. With the increase of strain, the flow stress first increases linearly, then increases slowly, and finally decreases sharply. The flow stress and strain hardening index of the material decrease with the increase of temperature, and the JC constitutive model can predict the plastic flow stress well.
Key words:  aviation Al7050 alloy    static and dynamic mechanical properties    split Hopkinson pressure bar    JC constitutive model
               出版日期:  2021-05-25      发布日期:  2021-06-04
ZTFLH:  TG115.5+3  
基金资助: 陕西省科技厅重点研究项目(2020GY-121);陕西理工大学研究生创新基金项目(SLGYCX1924)
通讯作者:  zhangchangmingsx@126.com   
作者简介:  王运,陕西理工大学硕士研究生,主要从事难加工材料的静动态力学特性及材料加工工艺方面的研究。
张昌明,博士,陕西理工大学教授,硕士研究生导师,2020年入选陕西省“特支计划”人才项目,陕西省“机械工程”省级重点学科带头人。主要从事飞机起落架性能检测及装备开发、航空零组件材料加工工艺及难加工材料刀具磨损工艺研究等工作。近年来,发表学术论文40余篇,发明专利7项,主持完成多项陕西省科技厅科研项目、陕西省教育厅科研项目及中航飞机有限公司长沙起落架公司横向项目。
引用本文:    
王运, 张昌明, 张昱. 航空Al7050合金的静动态力学特性研究及JC本构模型构建[J]. 材料导报, 2021, 35(10): 10096-10102.
WANG Yun, ZHANG Changming, ZHANG Yu. Study on Static and Dynamic Mechanical Properties of Aviation Al7050 Alloy and Construction of JC Constitutive Model. Materials Reports, 2021, 35(10): 10096-10102.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060201  或          http://www.mater-rep.com/CN/Y2021/V35/I10/10096
1 Tian F Q, Li N K, Cui J Z. Light Alloy Fabrication Technology, 2005, 33(12),1(in Chinese).
田福泉,李念奎,崔建忠.轻合金加工技术,2005,33(12), 1.
2 Wang T, Yin Z M. Chinese Journal of Rare Metals, 2006, 30(2),197(in Chinese).
王涛,尹志民.稀有金属,2006,30(2),197.
3 Liu S X, Tian S X, Chen C Q. Journal of Materials Engineering, 1996(4),34(in Chinese).
刘世兴,田世兴,陈昌麒.材料工程,1996(4), 34.
4 Wang D, Ma Z Y. Acta Metallurgica Sinica, 2008, 44(1),49(in Chinese).
王东,马宗义.金属学报,2008,44(1),49.
5 Feng Z Y, Li H H, Liu Y, et al. Materials Reports, 2020, 34(12), 12088(in Chinese).
冯振宇,李恒晖,刘义,等.材料导报,2020, 34(12), 12088.
6 Yi Y P, Yang J H, Lin Y C. Journal of Materials Engineering, 2007(4), 20(in Chinese).
易幼平,杨积慧,蔺永诚.材料工程,2007(4), 20.
7 Shen W T, Zhang P, Gao L, et al. Heavy Casting and Forging, 2016(6), 1(in Chinese).
沈文涛,张鹏,高蕾,等.大型铸锻件,2016(6), 1.
8 Li N, Li Y L, Guo W G. Acta Aeronautica et Astronautica Sinica, 2008,29(4), 903(in Chinese).
李娜,李玉龙,郭伟国.航空学报,2008, 29(4), 903.
9 Luo H, Wang Y Q, Zhang P. Journal of Central South University,2020, 27(2), 372.
10 Quan G Z, Wang T, Li Y L, et al.Journal of Materials Engineering and Performance, 2016, 25(2), 1.
11 Yang T J. Manufacturing Automation,2016,38(11), 28(in Chinese).
杨铁江.制造业自动化,2016,38(11), 28.
12 Zhang S F, Wei Z H, Wang X Y. Hot Working Technology, 2016, 45(11), 148(in Chine se).
张素芬,魏志辉,王晓阳.热加工工艺, 2016, 45(11), 148.
13 Li Y Y,Zhang P,Yu X,et al. Ordnance Material Science and Enginee-ring, 2020, 43(1), 20(in Chinese).
李媛媛,张平,于晓,等.兵器材料科学与工程,2020, 43(1), 20.
14 Ye T,Wu Y Z,Liu A M,et al. Chinese Journal of Materials Research,2019, 33(2), 109(in Chinese).
叶拓,吴远志,刘安民,等.材料研究学报, 2019, 33(2), 109.
15 Zhu B W,Liu J,Liu X,et al. Ordnance Material Science and Engineering, 2019, 42(4), 23(in Chinese).
朱必武,刘锦,刘筱,等.兵器材料科学与工程,2019, 42(4), 23.
16 Xiao J, Wang J, Guo W G, et al. Materials at High Temperatures, 2019, 36(2), 104.
17 Wang Z T, Tian R Z. Aluminum alloy and its processing manual, Central South University Press, China, 2000(in Chinese).
王祝堂,田荣璋.铝合金及其加工手册,中南大学出版社,2000.
18 Wang J, Guo W G, Li P, et al. Materials Science and Engineering A, 2016, 670, 1.
19 Liu T T, Zhang P C, He L F. Atomic Energy Science and Technology, 2009, 43(12), 1095(in Chinese).
刘婷婷,张鹏程,何立峰.原子能科学技术,2009, 43(12), 1095.
20 Xu W C, Shan D B, Yang G P, et al. Transactions of Nonferrous Metals Society of China, 2006, 16(z3), 2066.
21 He Z, Zhao S G, Yang J L, et al. Journal of Materials Science and Engineering, 2007, 25(3), 418(in Chinese).
何著,赵寿根,杨嘉陵,等.材料科学与工程学报,2007, 25(3), 418.
22 Lu F Y, Chen R, Lin Y L, et al. Hopkinson bar experiment technology, Science Press, China, 2013(in Chinese).
卢芳云,陈荣,林玉亮,等.霍普金森杆实验技术,科学出版社,2013.
23 Chen X F, Peng X Y, Zhang H Y, et al. Special Casting and Nonferrous Alloys, 2015, 35(12), 1237(in Chinese).
陈修梵,彭小燕,张慧颖,等.特种铸造及有色合金, 2015, 35(12), 1237.
24 Zhang Y T, Jia Y J, Xiao H, et al. Ordnance Material Science and Engineering, 2014, 37(3), 52(in Chinese).
张月婷,贾耀军,肖红,等.兵器材料科学与工程, 2014, 37(3), 52.
25 Zhang R, Luo P. Materials for Mechanical Engineering, 2014, 38(8), 11(in Chinese).
张蓉,罗裴.机械工程材料, 2014, 38(8), 11.
26 Fu X L. Study on the deformation theory and surface formation characteristics of high speed cutting aviation aluminum alloy. Ph.D. Thesis, Shandong University, China, 2007(in Chinese).
付秀丽.高速切削航空铝合金变形理论及加工表面形成特征研究.博士学位论文,山东大学,2007.
27 Dey S, Borvik T, Hopperstad O S, et al. International Journal of Impact Engineering, 2005, 34(3), 464.
28 Slycken J V, Verleysen P, Degrieck J, et al. Metallurgical and Materials Transactions A, 2006, 37(5), 1527.
29 Chen L, Zhao G, Yu J. Materials and Design, 2015, 74(6), 25.
30 Wen T, Liu L T, Huang Q, et al. Journal of Central South University, 2018, 25(6), 1251.
31 Di C C, Cui K B, Qin J Q, et al. Advanced Materials Research, 2014, 2989, 1032.
32 Jia B H, Liu S Y, Li G, et al. Titanium Industry Progress, 2018, 35(5), 24(in Chinese).
贾宝华,刘思勇,李革,等.钛工业进展, 2018, 35(5), 24.
33 Hu C M, He H L, Hu S S. Explosion and Shock Waves, 2003, 23(2), 188(in Chinese).
胡昌明,贺红亮,胡时胜.爆炸与冲击, 2003, 23(2), 188.
34 Liu N. Analytical modeling of serrated chip formation in high-speed machining of aluminum alloys. Master's Thesis, Utah State University, USA, 2003.
35 Li Y, Wang J, Guo W, et al. Journal of Theoretical and Applied Mecha-nics, 2019, 57(3), 537.
[1] 杨荣周, 徐颖, 陈佩圆, 王佳. SHPB劈裂试验下橡胶水泥砂浆的动态力学、能量特性及破坏机理试验研究[J]. 材料导报, 2021, 35(10): 10062-10072.
[2] 陈首, 石少卿, 何秋霖, 李季. 金属网增强混凝土抗冲击性能的试验研究与数值模拟[J]. 材料导报, 2020, 34(20): 20046-20052.
[3] 杨荣周, 徐颖, 陈佩圆. 养护湿度对橡胶水泥砂浆动态压缩破坏特征及能量耗散的影响[J]. 材料导报, 2020, 34(14): 14070-14078.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed