Please wait a minute...
材料导报  2023, Vol. 37 Issue (1): 21030212-12    https://doi.org/10.11896/cldb.21030212
  金属与金属基复合材料 |
液态金属的多功能化
李安敏1,2,3,*, 杨树靖1, 惠佳琪1, 袁子豪1, 常大鹏1, 黄卓昉1, 吴宇1
1 广西大学资源环境与材料学院,南宁 530004
2 省部共建特色金属材料与组合结构全寿命安全国家重点实验室,南宁 530004
3 广西铝产业生态协同创新中心,南宁 530004
Multifunctionalization of Liquid Metals
LI Anmin1,2,3,*, YANG Shujing1, HUI Jiaqi1, YUAN Zihao1, CHANG Dapeng1, HUANG Zhuofang1, WU Yu1
1 School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
2 State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, China
3 Center of Ecological Collaborative Innovation for Aluminum Industry in Guangxi, Nanning 530004, China
下载:  全 文 ( PDF ) ( 19169KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 液态金属是在室温或常温下处于液态的金属,又被称为低熔点金属。由于具有优越的导热、导电、润滑等性能,液态金属被应用在散热器、电池、3D打印、柔性机器人、磁流体发电、电磁屏蔽和生物医疗等领域,有着广阔的应用前景。各种新型多样的研究不断涌现。液态金属基塑料、合金等复合材料的问世也进一步推动了液态金属的发展。但是,液态金属的应用发展也面临瓶颈问题:腐蚀其他金属、密度大、质量大、原料储备种类数量过少等。本文综述了液态金属的多功能化的研究进展,并对液态金属的研究方向及应用前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李安敏
杨树靖
惠佳琪
袁子豪
常大鹏
黄卓昉
吴宇
关键词:  液态金属  功能化  导热  导电    
Abstract: Liquid metals are the metals in a liquid state at room temperature or normal temperature, and are also called low melting point metals. Liquid metals have excellent thermal conductivity, electrical conductivity, lubrication and other properties. They are applied to radiators, batteries, 3D printing, flexible robots, magnetic fluid power generation, electromagnetic shielding, biomedical and other fields, and they have broad application prospects. A variety of new researches continue to emerge. The advent of composite materials such as liquid metal-based plastics and alloys has also further promoted the development of liquid metals. However, the development of liquid metals is also facing bottlenecks: corroding other metals, high density, large quality, too few types of raw material reserves and so on. In this paper, the research progress of multifunctional liquid metals is reviewed, and the research direction and application prospect of liquid metals are prospected.
Key words:  liquid metal    functionalization    thermal conduction    electric conduction
出版日期:  2023-01-10      发布日期:  2023-01-31
ZTFLH:  TG146.4  
基金资助: 2021年中央引导地方科技发展资金专项(2021ZYZX2035);广西大学2021“大创计划”国家级创新训练项目(202110593102);广西有色金属及特色材料加工重点实验室基金项目(2021GXMPSF02)
通讯作者:  * 李安敏,广西大学资源环境与材料学院副教授、硕士研究生导师。1995年7月本科毕业于武汉科技大学金属材料及热处理专业,2010年6月在广西大学结构工程专业取得博士学位。主要从事高熵合金、铝合金的强韧化、轻质复合材料的研究工作。近年来,在高熵合金、铝合金、复合材料等领域发表论文30余篇,包括Journal of Materials Engineering and Performance、Acta Metallurgica Sinica、Journal of Electronic Materials等。lamanny@126.com   
引用本文:    
李安敏, 杨树靖, 惠佳琪, 袁子豪, 常大鹏, 黄卓昉, 吴宇. 液态金属的多功能化[J]. 材料导报, 2023, 37(1): 21030212-12.
LI Anmin, YANG Shujing, HUI Jiaqi, YUAN Zihao, CHANG Dapeng, HUANG Zhuofang, WU Yu. Multifunctionalization of Liquid Metals. Materials Reports, 2023, 37(1): 21030212-12.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030212  或          http://www.mater-rep.com/CN/Y2023/V37/I1/21030212
1 Chen S, Wang H, Zhao R, et al. Matter, 2020, 2(6), 1446.
2 Yu Y Z, Liu J. Journal of Engineering Studies, 2017, 9(6), 577(in Chinese).
于永泽, 刘静. 工程研究-跨学科视野中的工程, 2017, 9(6), 577.
3 Yu H, Wu H J, Liu Y, et al. Precious Metals, 2018, 39(2), 76(in Chinese).
余浩, 武海军, 刘毅, 等. 贵金属, 2018, 39(2), 76.
4 Li X, Li Y, Tong Z, et al. Tribology International, 2019, 129, 407.
5 Guo J, Cheng J, Tan H, et al. Materialia, 2018, 4, 10.
6 Guo J, Cheng J, Tan H, et al. Tribology International, 2019, 135, 457.
7 Bai P P, Li S W, Jia W P, et al. Tribology International, 2020, 141, 105904.
8 Cheng J, Zhu S, Tan H, et al. Wear, 2019, 430-431, 94.
9 Li X, Qi P, Liu Q, et al. Wear, 2021, 484, 203852.
10 Gao Y X, Liu J, Wang X P, et al. Journal of Engineering Thermophysics, 2017, 38(5), 1077(in Chinese).
高云霞, 刘静, 王先平, 等. 工程热物理学报, 2017, 38(5), 1077.
11 Jiang K. Mechanical and Electrical Information, 2020(12), 91(in Chinese).
姜珂. 机电信息, 2020(12), 91.
12 Webb R L, Gwinn J P. In:Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems. San Diego, CA, USA, 2002, pp. 671.
13 Roy C K, Bhavnani S, Hamilton M C, et al. Applied Thermal Engineering, 2016, 99, 72.
14 Wang X, Lu C, Rao W. Applied Thermal Engineering, 2021, 192, 116937.
15 刘静, 周一欣. 中国专利, CN1489020, 2004.
16 Yang H Y, Yan H, Jiang J K. Atomic Energy Science and Technology, 2021, 55(4), 6(in Chinese).
杨红义, 颜寒, 姜净珂. 原子能科学技术, 2021, 55(4), 6.
17 Xiang X, Fan Y, Fan A, et al. Applied Thermal Engineering, 2017, 127, 1143.
18 Yan X W, Xu Q Y, Tian G Q, et al. Journal of Materials Science & Technology, 2021, 67, 36
19 Zhang X D, Li X P, Zhou Y X, et al. Applied Thermal Engineering, 2019, 162, 114212.
20 Pérez-Valseca A D, Aguilar-Madera C G, Herrera-Hernández E C, et al. International Journal of Heat and Mass Transfer, 2021, 165, 120622.
21 Salyan S, Praveen B, Singh H, et al. Solar Energy Materials and Solar Cells, 2020, 208, 110365.
22 OECD and Nuclear Energy Agency. Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermalhydraulics and technologies, OECD Publishing, Editions OCDE, 2015.
23 Frazer D, Stergar E, Cionea C, et al. Energy Procedia, 2014, 49, 627.
24 Zhang K, Peng B, Guo J J, et al. Power Capacitor & Reactive Power Compensation, 2016, 37(2), 54(in Chinese).
张坤, 彭勃, 郭姣姣, 等. 电力电容器与无功补偿, 2016, 37(2), 54.
25 Simpson J G, Hanrahan G, Loth E, et al. Renewable and Sustainable Energy Reviews, 2021, 149, 111387.
26 Yeo J, Lee J, Yoo E. Electrochimica Acta, 2018, 290, 228.
27 Yeo J, Yoo E, Im C N, et al. Electrochimica Acta, 2021, 389, 138697.
28 Wang Y S, Wang X S, Xue M Q, et al. Chemical Engineering Journal, 2021, 409, 128160.
29 Zabrocki M, Gąsior W, Dębski A. Journal of Molecular Liquids, 2021, 332, 115765.
30 Jani M H, Vora A M. Materials Today: Proceedings, 2021, 47, 661.
31 Zhang J, Wang X Q, Su T, et al. Acta Physica Sinica, 2021, 70(8), 37(in Chinese).
张健, 王心桥, 苏彤, 等. 物理学报, 2021, 70(8), 37.
32 Li T, Cui Y, Fan L, et al. Applied Materials Today, 2020, 21, 100802.
33 Li X, Qu J, Zhao Z, et al. Journal of Cleaner Production, 2021, 312, 127779.
34 Xie H, Zhao H, Wang J, et al. Journal of Power Sources, 2020, 472, 228634.
35 Lin J, Wang S, Li H M, et al. Proceedings of the CSEE, 2021, 41(4), 11(in Chinese).
林靖, 王晟, 李浩秒, 等. 中国电机工程学报, 2021, 41(4), 11.
36 Xu L, Wang B, Han F S, et al. Materials Science and Technology, 2021, 29(2), 20(in Chinese).
徐丽, 王博, 韩福盛, 等. 材料科学与工艺, 2021, 29(2), 20.
37 Bharambe V, Parekh D P, Ladd C, et al. Additive Manufacturing, 2017, 18, 221.
38 Yu Y, Lu J, Liu J. Materials & Design, 2017, 122, 80.
39 Zhan J B. Research on 3D coaxial printing of liquid metal-based flexible electronic devices. Master’s Thesis, Zhejiang University, China, 2018(in Chinese).
詹俊赋. 液态金属基柔性电子器件3D同轴打印研究. 硕士学位论文, 浙江大学, 2018.
40 Tian R M, Sun X Y, Liang H W, et al. Energy and Conservation, 2020(1), 68(in Chinese).
田茹梦, 孙轩懿, 梁红雯, 等. 能源与节能, 2020(1), 68.
41 Lei Z K, Tan G G, Man Q K, et al. Materials Research Bulletin, 2021, 137, 111199.
42 Yao B, Xu X W, Li H, et al. Chemical Engineering Journal, 2021, 410, 128288.
43 Zhang M K, Zhang P J, Zhang C L, et al. Applied Materials Today, 2020, 19, 100612.
44 West D, Taylor J A, Krupenkin T. Energy Conversion and Management, 2020, 223, 113223.
45 Cosoroaba E, Caicedo C, Maharjan L, et al. Sustainable Energy Technolo-gies and Assessments, 2019, 35, 180.
46 Kusumi K, Kunugi T, Yokomine T, et al. Fusion Engineering and Design, 2018, 136, 223.
47 Zhao L Z, Peng A W, Li J, et al. Transactions of China Electrotechnical Society, 2015, 30(17), 126(in Chinese).
赵凌志, 彭爱武, 李建, 等. 电工技术学报, 2015, 30(17), 126.
48 Wang T J, Kwok T, Zhou C. Procedia Manufacturing, 2017, 10, 968.
49 Liu J. Strategic Study of CAE, 2020, 22(5), 93(in Chinese).
刘静. 中国工程科学, 2020, 22(5), 93.
50 Zhang J, Yao Y Y, Sheng L, et al. Advanced Materials(Deerfield Beach, Fla. ), 2015, 27(16), 2648.
51 Zhang Q L, Deng Z S, Liu J. Science, 2018, 70(3), 1(in Chinese).
张晴蕾, 邓中山, 刘静. 科学, 2018, 70(3), 1.
52 Sheng L, He Z Z, Yao Y Y, et al. Small, 2015, 11(39), 5253.
53 Yuan B, Wang L, Yang X, et al. Advance Science, 2016, 3(10), 1600212.
54 Chen S, Zhang Q L, Yang X H, et al. Science, 2019, 71(2), 7(in Chinese).
陈森, 张晴蕾, 杨小虎, 等. 科学, 2019, 71(2), 7.
55 Sun X Y, Yuan B, Sheng L, et al. Applied Materials Today, 2020, 20, 100722.
56 Sohn Y, Chu K. Materials Letters, 2020, 265, 127223.
57 Xie W J, Allioux F, Ou J Z, et al. Trends in Biotechnology(Regular ed.), 2020, 39(6), 624.
58 Zhao X, Liu G, Xia H, et al. Chinese Physics B, 2020, 29(5), 54305.
59 Zhu P, Gao S S, Lin H, et al. Nano Letters, 2019, 19(3), 2128.
60 Kulkarni S, Pandey A, Mutalik S. Nanomedicine: Nanotechnology, Biology and Medicine, 2020, 26, 102175.
61 Larsson D H, Lundstrom U, Westermark U K, et al. Medical Physics, 2013, 40(2), 21909.
62 Wang D L, Gao C Y, He Q. In: The 17th Chinese Chemical Society Colloidal and Interface Chemistry Conference. Wuxi, China, 2019(in Chinese).
王道林, 高长永, 贺强. 中国化学会第十七届全国胶体与界面化学学术会议. 无锡, 2019.
63 Ye J, Chen J Y, Liu J. Science China, 2019, 49(6), 619(in Chinese).
叶姣, 陈建业, 刘静. 中国科学(技术科学), 2019, 49(6), 619.
64 Li F X, Shu J, Zhang L R, et al. Applied Materials Today, 2020, 19, 100597.
65 Liu H C, Yang M K, Yuan X, et al. China Mechanical Engineering, 2021, 32(12), 1470(in Chinese).
刘会聪, 杨梦柯, 袁鑫, 等. 中国机械工程, 2021, 32(12), 1470.
66 Liu H, Liu H Q, Lin Z Y, et al. Rare Metal Materials and Engineering, 2018, 47(9), 2668
67 Zhu Q, Wang M J, Zhang C Y, et al. Journal of Qingdao University of Science and Technology(Natural Science Edition), 2019, 40(3), 52(in Chinese).
朱晴, 王梦婕, 张灿英, 等. 青岛科技大学学报(自然科学版), 2019, 40(3), 52.
68 Ki S, Shim J, Oh S, et al. International Journal of Heat and Mass Transfer, 2021, 170, 121012.
69 Lou Y, Liu H, Zhang J. Chemical Engineering Journal, 2020, 399, 125732.
70 Ralphs M I, Kemme N, Vartak P B, et al. ACS Applied Materials & Interfaces, 2018, 10(2), 2083.
71 Mao Y, Wu Y X, Zhang P J, et al. Journal of Materials Science & Technology, 2021, 61, 132.
72 Liao S, Wang X, Li X, et al. Chemical Engineering Journal, 2021, 422, 129962.
73 Xu T D, Chen Y, Li R L. RADAR & ECM, 2020, 40(4), 59(in Chinese).
徐太栋, 陈杨, 李润林. 雷达与对抗, 2020, 40(4), 59.
74 Fu S S, Ma S Q, Ma S C, et al. China Foundry Machinery & Technology, 2020, 55(4), 34(in Chinese).
付沙沙, 马胜强, 马胜超, 等. 中国铸造装备与技术, 2020, 55(4), 34.
75 Krasin V P, Lyublinski I E, Soyustova S I. Journal of Nuclear Materials, 2016, 480, 40.
76 Meng X C. Research on corrosion characteristics of related materials in fusion device in liquid lithium. Ph. D. Thesis, Hunan University, China, 2018(in Chinese).
孟献才. 聚变装置中相关材料在液态锂中的腐蚀特性研究. 博士学位论文, 湖南大学, 2018.
77 Li M Y, Jiang Z Z, Chen L L, et al. Nuclear Science and Engineering, 2018, 38(5), 784(in Chinese).
李明扬, 姜志忠, 陈刘利, 等. 核科学与工程, 2018, 38(5), 784.
78 Xu G P, Wang K, Dong X P, et al. Corrosion Science, 2020, 163, 108276.
79 Sun W X, Yan D R, Chen X G, et al. Nonferrous Metals(Extractive Metallurgy), 2010(3), 46(in Chinese).
孙文秀, 阎殿然, 陈学广, 等. 有色金属(冶炼部分), 2010(3), 46.
80 Jian Y X, Huang Z F, Xing J D, et al. Tribology International,2016, 101, 331.
81 Ma S Q, Xing J D, Fu H G, et al. Corrosion Science, 2014, 78, 71.
82 Liu W, Du K F, Hu X H, et al. Journal of Chinese Society for Corrosion and Protection, 2020, 40(2), 81(in Chinese).
刘威, 杜开发, 胡晓宏, 等. 中国腐蚀与防护学报, 2020, 40(2), 81.
83 Horsley G W, Maskrey J T. Journal of the Iron and Steel Institute, 1958, 189, 017127.
[1] 马驰, 曹流, 张东. 定向导热的石墨烯气凝胶相变复合材料的研究[J]. 材料导报, 2023, 37(1): 21080077-6.
[2] 林伯, 句子涵, 胡定华, 李强. 基于泡沫铜骨架高导热复合相变储热材料的热性能研究[J]. 材料导报, 2022, 36(Z1): 21110168-5.
[3] 陈杰, 樊正阳, 毛华明, 尹俊刚, 李耀, 代伟, 杨宏伟. 镀银铜纳米颗粒的制备与应用研究进展[J]. 材料导报, 2022, 36(Z1): 21090201-4.
[4] 彭龙生, 刘春泉, 周浩, 林英华. 电渣重熔新技术的研究现状及发展趋势[J]. 材料导报, 2022, 36(Z1): 21100138-9.
[5] 温泽明, 陈剑英, 王越平, 肖红. 镓基液态金属在可穿戴器件与智能服装上的应用研究进展[J]. 材料导报, 2022, 36(9): 20080043-5.
[6] 魏宁, 铁生年. 功能化碳纳米纤维增强芒硝基相变储能材料的热性能[J]. 材料导报, 2022, 36(6): 21050177-7.
[7] 李佩悦, 马立云, 谢恩俊, 任子杰, 周新军, 高惠民, 吴建新. 六方氮化硼高导热纳米材料:晶体结构、导热机理及表面修饰改性[J]. 材料导报, 2022, 36(6): 20090231-12.
[8] 李彤, 赵卓, 武俊生, 方方, 周艳文. 粉末靶磁控溅射ZnO/Cu/ZnO的制备及表征[J]. 材料导报, 2022, 36(6): 20120259-4.
[9] 范利丹, 孙亮, 余永强, 张纪云, 郭佳奇. 偏高岭土提高水泥基注浆材料在高地温隧道工程中的适应性[J]. 材料导报, 2022, 36(6): 20100228-8.
[10] 李兴建, 侯晴, 杨继龙, 范宇飞, 崔秋月, 徐守芳. 电刺激响应形状记忆聚合物复合材料的设计和驱动性能[J]. 材料导报, 2022, 36(6): 20070243-12.
[11] 蔡中盼, 田茂诚, 张冠敏. 不同层数和尺寸的石墨烯对润滑油热物性能的影响[J]. 材料导报, 2022, 36(3): 20100213-8.
[12] 谭海丰, 侯梦晴, 吴晨, 贺春林, 张滨. 镍基石墨烯复合材料的研究进展[J]. 材料导报, 2022, 36(24): 21040029-6.
[13] 王雅君, 白秋红, 伍根成, 王正, 李聪, 申烨华. 纳米纤维素基复合材料及其用于柔性储能器件的研究进展[J]. 材料导报, 2022, 36(23): 21010198-7.
[14] 向艳超, 高鸿, 文明, 赵啟伟. 航天器热控材料及应用研究进展[J]. 材料导报, 2022, 36(22): 22050193-6.
[15] 刘泰江, 陈俊龙, 赵杰, 陈楠泓, 李依麟, 梁宏富, 杨跃鑫, 姚日晖, 宁洪龙, 彭俊彪. 喷墨打印制备柔性高精度导电图案研究进展[J]. 材料导报, 2022, 36(20): 21010127-9.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed