Please wait a minute...
材料导报  2022, Vol. 36 Issue (3): 20100213-8    https://doi.org/10.11896/cldb.20100213
  高分子与聚合物基复合材料 |
不同层数和尺寸的石墨烯对润滑油热物性能的影响
蔡中盼, 田茂诚, 张冠敏
山东大学能源与动力工程学院,济南 250061
Effect of Graphene with Different Layers and Sizes on Thermal Properties of Lubricating Oil
CAI Zhongpan, TIAN Maocheng, ZHANG Guanmin
School of Energy and Power Engineering, Shandong University, Jinan 250061,China
下载:  全 文 ( PDF ) ( 7493KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 石墨烯在结构及性能上的独特优势赋予了其在现代科学和技术领域不可替代的作用。石墨烯的许多物理化学性质对石墨烯的层数和结构尺寸十分敏感。本研究选取了三种典型的石墨烯纳米颗粒,分别是极少层石墨烯(1#)、少层石墨烯(2#)和多层石墨烯(3#),将它们分别添加在现有的润滑油中,制备了不同质量分数的纳米流体,并对其导热系数、比热容和粘度进行实验测量。结果表明,采用两步法制备的石墨烯纳米流体具有很好的稳定性,通过高速离心机测试发现,其分散性较好,无团聚现象。在温度相同、石墨烯颗粒质量分数也相同的情况下,1#石墨烯所制备的纳米流体具有最优的热物性能,其导热系数较基液最大可以提高143.63%,比热容较基液可以提高23.58%。2#石墨烯所制备的纳米流体热物性能次之,3#石墨烯最差。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蔡中盼
田茂诚
张冠敏
关键词:  石墨烯  纳米流体  导热性能  比热容    
Abstract: The unique advantages of graphene in structure and performance give it an irreplaceable role in modern science and technology. Many phy-sical and chemical properties of graphene are very sensitive to the number of layers and structure size of graphene. In this study, three kinds of typical graphene nanoparticles were selected, which were very few layers graphene (1#), few layers graphene (2#) and multilayer graphene (3#), the nanofluids with different mass fraction were prepared by adding them to the existing lubricating oil. The thermal conductivity, specific heat capacity and viscosity were measured. The results show that the graphene nanofluid prepared by the two-step method had good stability, and it had good dispersion and no agglomeration by high-speed centrifuge test. At the same temperature and the same mass fraction of graphene particles, the nanofluids prepared by 1# graphene had the best thermophysical properties. Compared with the base liquid, the thermal conductivity can increase by 143.63%, and the specific heat capacity can increase by 23.58%. The thermal properties of nanofluids by 2# graphene were the second, while the thermal properties of nanofluids by 3# graphene were the worst.
Key words:  graphene    nanofluid    thermal conductivity    specific heat capacity
发布日期:  2022-02-10
ZTFLH:  TF12  
基金资助: 国家自然科学基金(51676114)
通讯作者:  tianmc65@sdu.edu.cn   
作者简介:  蔡中盼,山东大学博士研究生,从事纳米流体热质传递特性的研究。
田茂诚,山东大学教授,博士生导师。主要从事传热强化及节能技术研究,主要涉及传热强化理论、新型换热器开发与设计、供热系统优化及控制、热工过程动态仿真等。
引用本文:    
蔡中盼, 田茂诚, 张冠敏. 不同层数和尺寸的石墨烯对润滑油热物性能的影响[J]. 材料导报, 2022, 36(3): 20100213-8.
CAI Zhongpan, TIAN Maocheng, ZHANG Guanmin. Effect of Graphene with Different Layers and Sizes on Thermal Properties of Lubricating Oil. Materials Reports, 2022, 36(3): 20100213-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100213  或          http://www.mater-rep.com/CN/Y2022/V36/I3/20100213
1 Choi S U S, Eastman J A. Asme Fed, 1995, 231(1), 99.
2 Keblinski P, Eastman J A, Cahill D G. Materials Today, 2005, 8(6), 36.
3 Lee S P, Choi S, Li S, et al. Journal of Heat Transfer, 1999, 121(2), 280.
4 Masuda H, Ebata A, Teramae K, et al. Netsu Bussei(Japan), 1993, 7(4), 227.
5 Kim D, Kwon Y, Cho Y, et al. Current Applied Physics,2009, 9(2), e119.
6 Liu M S, Lin C C, Wang C C. Nanoscale Research Letters,2011, 6(1), 297.
7 Chopkar M, Das P K, Manna I. Scripta Materialia, 2006, 55(6), 549.
8 Jha N, Ramaprabhu S. Journal of Physical Chemistry C, 2008, 112(25), 9315.
9 Assael M J, Chen C F, Metaxa I, et al. International Journal of Thermophysics,2004, 25(4), 971.
10 Ma L X, Chang Q, Qiu J Y,et al. Materials Reports B:Research Papers, 2015,29(8),79(in Chinese).
马连湘,常强,邱金友,等。材料导报:研究篇, 2015, 29(8), 79.
11 Wen D, Ding Y. Journal of Thermophysics & Heat Transfer, 2004, 18(4), 481.
12 Amiri A, Sadri R, Shanbedi M, et al. Energy Conversion & Management, 2015, 101, 767.
13 Baby T T, Ramaprabhu S. Nanoscale Research Letters, 2011, 6(1), 1.
14 Lin Y, Zhang H, He C, et al. Journal of Materials Science, 2017, 52(17), 10485.
15 Naghash A, Sattari S, Rashidi A. International Communications in Heat & Mass Transfer, 2016, 78, 127.
16 Haque A K M M, Kwon S, Kim J, et al. Journal of Central South University, 2015, 22(8), 3202.
17 Mohammad M, Emad S, Tahan L S, et al. Nanoscale Research Letters,2014, 9(1), 15.
18 Selvam C, Lal D M, Harish S. Journal of Thermal Analysis & Calorimetry, 2017, 129(2), 1.
19 Zheng R, Gao J, Wang J, et al. Nature Communications, 2011, 2(1), 289.
20 Harish S, Ishikawa K, Chiashi S, et al. Journal of Physical Chemistry C, 2013, 117(29), 15409.
21 Yi M, Shen Z G. Journal of Materials Chemistry A,2015,3,11700.
22 Kauling A P, Seefeldt A T, Pisoni D P, et al. Advanced Materials,2018,30(44), 1803784.
[1] 褚洪岩, 高李, 秦健健, 汤金辉, 蒋金洋. 磺化石墨烯对再生砂超高性能混凝土力学性能和耐久性能的影响[J]. 材料导报, 2022, 36(5): 20090345-5.
[2] 姚庆达, 梁永贤, 王小卓, 温会涛, 周华龙, 但卫华. GO/CS的结构、性能及其在水处理中的应用研究进展[J]. 材料导报, 2022, 36(4): 20110041-13.
[3] 谭洁慧, 邓凌峰, 张淑娴, 李金磊, 王壮, 覃榕荣. 利用微量碳纳米管与石墨烯协同包覆提高LiCoO2正极材料的性能[J]. 材料导报, 2022, 36(2): 20100058-6.
[4] 邵丹, 王美玲, 陈志炎, 高亚军, 庞欢. 碳材料在色素电化学传感中的研究进展[J]. 材料导报, 2021, 35(z2): 22-27.
[5] 蒋星宇, 王洁琼, 邱琳琳, 白冰, 金正飞, 梅德强, 杜平凡. 碳基纤维材料在能源领域的应用[J]. 材料导报, 2021, 35(z2): 470-478.
[6] 贾东, 蔡淑红, 李献强, 郝文静, 刘波涛, 谭凯锋, 王峰. 纳米流体导热介质研究进展[J]. 材料导报, 2021, 35(z2): 540-549.
[7] 张勇, 郝永刚. 石墨烯及氧化石墨烯在纺织领域的应用[J]. 材料导报, 2021, 35(Z1): 78-82.
[8] 黄绪德, 刘欣. 利用维生素C和茶多酚还原氧化石墨烯及其表征[J]. 材料导报, 2021, 35(Z1): 83-86.
[9] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[10] 朱家乐, 白羽婷, 冯思思. 氧化石墨烯/金属-有机框架复合材料在光催化中的应用[J]. 材料导报, 2021, 35(Z1): 315-321.
[11] 刘家森, 陈秀华, 李绍元, 马文会, 李毅, 胡焕然, 马壮. 石墨烯/硅肖特基结太阳能电池的研究进展[J]. 材料导报, 2021, 35(9): 9115-9122.
[12] 贾琨, 王喆, 王蓬, 王东红, 马晨, 刘伟. 导热吸波材料的研究进展及未来发展方向[J]. 材料导报, 2021, 35(9): 9133-9139.
[13] 孙晓玲, 弓巧娟, 梁云霞, 巩鹏妮. 新型薄层氮化碳/氧化石墨烯复合材料的制备及在锌-空气电池中的应用[J]. 材料导报, 2021, 35(8): 8001-8006.
[14] 陈瑞芳, 曲雯雯, 王一钧, 马保挎, 陈尚民. 溶剂对钨酸铋/石墨烯形貌结构和光催化性能的影响[J]. 材料导报, 2021, 35(6): 6008-6014.
[15] 索鑫磊, 刘艳, 张立来, 苏杭, 李婉, 李国龙. 基于氧化石墨烯空穴传输层的平面异质结钙钛矿太阳能电池[J]. 材料导报, 2021, 35(6): 6015-6019.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed