Please wait a minute...
材料导报  2023, Vol. 37 Issue (1): 21040290-7    https://doi.org/10.11896/cldb.21040290
  无机非金属及其复合材料 |
基于FBG传感器和卷积神经网络的复合材料结构载荷识别研究
刘凯伟, 刘琦牮, 李骏, 余映红, 卿新林*
厦门大学航空航天学院,福建 厦门 361102
Load Identification of Composite Structural Based on FBG Sensor and Convolutional Neural Network
LIU Kaiwei, LIU Qijian, LI Jun, YU Yinghong, QING Xinlin*
School of Aerospace Engineering, Xiamen University, Xiamen 361102, Fujian, China
下载:  全 文 ( PDF ) ( 10260KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 复合材料因其优异的性能被广泛应用于飞行器结构(如飞机机翼)中,对作用在复合材料上的载荷进行识别为飞行器的结构设计和可靠性分析提供了重要的保证,在结构的工程应用中具有很高的价值。本工作研究了一种基于光纤布拉格光栅(FBG)传感器和卷积神经网络(CNN)的多点复杂载荷识别方法。在复合材料悬臂梁上布设FBG传感器,利用FBG实际测量得到的应变数据,首先通过支持向量机(SVM)算法对施加载荷的个数进行识别。进一步根据测点排列顺序,再将应变数据转化成矩形图片,经过归一化处理后输入CNN中,实现同时施加多个载荷时载荷的定位和定量,并与反向传播神经网络(BPNN)和梯度提升决策树(GBDT)的预测结果对比。SVM模型识别准确率为99.584%,CNN模型对两点载荷施加位置预测的平均绝对误差(MAE)分别为0.637 9 mm和0.576 2 mm。结果表明,基于SVM和CNN的多点载荷识别方法是一种有效的方法,可以稳定、准确地识别载荷个数、载荷施加的位置和大小,为飞行器飞行载荷测量提供新的解决方案。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘凯伟
刘琦牮
李骏
余映红
卿新林
关键词:  多点载荷识别  光纤布拉格光栅传感器  卷积神经网络  支持向量机    
Abstract: Composite materials have been widely utilized in aircraft structures such as aircraft wings because of excellent performance. Therefore, recognizing the loads acting on composite materials has a significant influence on the structure design and reliability analysis of aircraft. In this work, a method based on fiber Bragg grating (FBG) sensor and convolutional neural network (CNN) was utilized to recognize the complex multi-point load. The experiment was carried out on a composite cantilever beam and the strain data was collected by sensors placed on the structure. Firstly, the strain data was input into the support vector machine (SVM) algorithm to identify the number of applied loads. Furthermore, the strain data was transformed into a rectangular picture according to the arrangement of the measuring points. After the normalization process, the picture was input into the CNN model to realize the positioning and quantification of the multi-point load. Finally, the results of CNN model were compared with the results of back-propagation neural network (BPNN) and gradient boosting decision tree (GBDT), respectively. In the experiment, the recognition accuracy of the SVM model was 99.584%. For the position of the two-point load, the mean absolute error (MAE) of the CNN model is 0.637 9 mm and 0.576 2 mm. The results indicated that the load identification method based on SVM and CNN is an effective method to identify the number of loads, the position and size of the loads applied. Additionally, the method is capable of providing a new solution for aircraft flight loads measurement.
Key words:  multi-point load identification    fiber Bragg grating sensor    convolutional neural network    support vector machine
出版日期:  2023-01-10      发布日期:  2023-01-31
ZTFLH:  V267  
基金资助: 国家自然科学基金(U2141245;11772279;11972314)
通讯作者:  * 卿新林,1993年于清华大学获得博士学位,现为厦门大学南强特聘教授、航空航天学院博士研究生导师。主要研究方向为结构健康监测、先进传感技术、飞行器健康管理等,并在领域内取得大量系统性、创新性的研究成果,在Composite Structures、Mechanical Systems and Signal Processing、Structural Health Monitoring、Ultrasonics等国际知名杂志发表学术论文170余篇,发明专利30多项。xinlinqing@xmu.edu.cn   
作者简介:  刘凯伟,2019年于厦门大学获得工学学士学位。现为厦门大学航空航天学院硕士研究生,在卿新林教授的指导下进行研究。目前主要研究方向为复合材料载荷识别。
引用本文:    
刘凯伟, 刘琦牮, 李骏, 余映红, 卿新林. 基于FBG传感器和卷积神经网络的复合材料结构载荷识别研究[J]. 材料导报, 2023, 37(1): 21040290-7.
LIU Kaiwei, LIU Qijian, LI Jun, YU Yinghong, QING Xinlin. Load Identification of Composite Structural Based on FBG Sensor and Convolutional Neural Network. Materials Reports, 2023, 37(1): 21040290-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21040290  或          http://www.mater-rep.com/CN/Y2023/V37/I1/21040290
1 Derriso M M, Desimio M P, Mccurry C D, et al. Structural Health Monitoring, 2014, 13(6), 591.
2 Sutherland L S. Composite Structures, 2018, 188, 197.
3 Sekine H, Atobe S. Composite Structures, 2009, 89(1), 1.
4 Lau K T. Materials Science and Technology, 2014, 30(13), 1642.
5 Li J, Yu Y, Qing X. Sensors, 2021, 21(4), 1452.
6 Cooper S B, DiMaio D. Advances in Engineering Software, 2018, 125, 113.
7 Liu H, Liu Q, Liu B, et al. Mechanical Systems and Signal Processing, 2021, 151, 107383.
8 He F D. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(11), 1800(in Chinese).
何发东. 机械科学与技术, 2015, 34(11), 1800.
9 Alvarez-Montoya J, Carvajal-Castrillon A, Sierra-Perez J. Mechanical Systems and Signal Processing, 2020, 136, 106526.
10 Wu S, Sun Y, Li Y, et al. Journal of Vibration and Acoustics, 2019, 141(4), 041013.
11 Hafizi Z M, Epaarachchi J, Lau K T. Measurement, 2015, 61, 51.
12 Nicolas M J, Sullivan R W, Richards W L, et al. Aerospace, 2016, 3(3), 18.
13 Vosoughi A R, Anjabin N. Inverse Problems in Science and Engineering, 2017, 25(11), 1639.
14 Zhang X, Wang P, Liang D, et al. Optics Communications, 2015, 343, 38.
15 Di Sante R. Sensors, 2015, 15(8), 18666.
16 Coates C W, Thamburaj P. Journal of Aircraft, 2008, 45(2), 366.
17 Airoldi A, Marelli L, Bettini P, et al. In: Conference Record of the Conference on Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems. Portland, 2017, pp.10168.
18 Cao X, Sugiyama Y, Mitsui Y. Computers and Structures, 1998, 69(1), 63.
19 Yan G. Inverse Problems in Science and Engineering, 2014, 22(6), 940.
20 Mountrakis G, Im J, Ogole C. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(3), 247.
21 Soualhi A, Medjaher K, Zerhouni N. IEEE Transactions on Instrumentation and Measurement, 2014, 64(1), 52.
22 Gui G, Pan H, Lin Z, et al. KSCE Journal of Civil Engineering, 2017, 21(2), 523.
23 Orru G, Pettersson-Yeo W, Marquand A F, et al. Neuroscience and Biobehavioral Reviews, 2012, 36(4), 1140.
24 Bui D T, Tran T A, Klempe H, et al. Landslides, 2016, 13(2), 361.
25 Rawat W, Wang Z. Neural Computation, 2017, 29(9), 2352.
26 Gu J, Wang Z, Kuen J, et al. Pattern Recognition, 2018, 77, 354.
27 Janssens O, Slavkovikj V, Vervisch B, et al. Journal of Sound and Vibration, 2016, 377, 331.
28 Abdel-Hamid O, Abdel-Rahman M, Jiang H, et al. IEEE/ACM Transactions on Audio, Speech and Language Processing, 2014, 22(10), 1533.
29 Frid-Adar M, Diamant I, Klang E, et al. Neurocomputing, 2018, 321, 321.
30 Sindagi V A, Patel V M. Pattern Recognition Letters, 2017, 107, 3.
31 Cha Y J, Choi W, Büyüköztürk O, et al. Computer Aided Civil and Infrastructure Engineering, 2017, 32(5), 361.
[1] 杨传礼, 张修庆. 基于机器视觉和深度学习的材料缺陷检测应用综述[J]. 材料导报, 2022, 36(16): 20070136-9.
[2] 张永志, 李旭英, 辛全忠, 孔祥明, 王永亮. 自组织CNN建模识别耐热钢金相组织研究[J]. 材料导报, 2022, 36(12): 21030032-6.
[3] 张永志, 辛全忠, 王永亮, 孔祥明, 刘昉, 杨再胜. 基于迁移学习的钢金相组织分类与识别方法的研究[J]. 材料导报, 2021, 35(24): 24152-24157.
[4] 黄炜, 葛培, 李萌, 许洪飞. 混杂纤维再生砖骨料混凝土正交试验及卷积神经网络预测分析[J]. 材料导报, 2021, 35(19): 19022-19029.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed