Please wait a minute...
材料导报  2022, Vol. 36 Issue (9): 20080043-5    https://doi.org/10.11896/cldb.20080043
  金属与金属基复合材料 |
镓基液态金属在可穿戴器件与智能服装上的应用研究进展
温泽明1, 陈剑英2, 王越平1, 肖红3,*
1 北京服装学院材料设计与工程学院,北京 100020
2 东华大学纺织学院,上海 201600
3 军事科学院系统工程研究院,北京 100010
Research Progress on Applications of Gallium-based Liquid Metal in Wearable Devices and Smart Clothing
WEN Zeming1, CHEN Jianying2, WANG Yueping1, XIAO Hong3,*
1 School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100020, China
2 Institute of Textiles, Donghua University, Shanghai 201600, China
3 System Engineering Research Institute, Academy of Military Sciences PLA China, Beijing 100010, China
下载:  全 文 ( PDF ) ( 1384KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 镓基液态金属在室温下具有良好的可变形性和高电导率,是制造柔性电子器件导电单元的极佳材料。本文针对大多数电子元器件柔性差、难以应用在纺织服装领域的问题,基于液态金属的导电高、室温流动性及浸润性好等性能,综述了基于液态金属的、形态多样的柔弹性电子器件,包括导电微球、柔弹性导线及薄膜、织物器件的研究现状。这些器件可发生弯曲形变,弹性好,在外力作用下仍能保持电学稳定性。通过对液态金属的粘度、浸润性能等的改性并结合纺织材料的结构特点及制备技术,可以制备出柔弹性、智能化的纺织基电子器件,其兼具织物的柔性和液态金属的高电导率,有望应用于智能服装领域。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
温泽明
陈剑英
王越平
肖红
关键词:  液态金属  导电性能  柔性  可穿戴器件  智能服装    
Abstract: Gallium-based liquid metal has good deformability and high conductivity at room temperature, which is an excellent material for making conductive units of flexible electronic devices. Aiming at the problem that most electronic components have poor flexibility and are difficult to be applied in the field of textile and clothing, based on the high conductivity, room temperature fluidity and wettability of liquid metal, this paper summarizes the research status of flexible electronic devices based on liquid metal with various forms, including conductive microspheres, flexible wires and films, and fabric devices. These devices can bend and deform, have good elasticity, and keep electrical stability under external force. By modifying the viscosity and wettability of liquid metal, combined with the structural characteristics and preparation technology of textile materials, flexible and intelligent textile based electronic devices can be realized, which have both the flexibility of fabric and the high conductivity of liquid metal, and are expected to be used in intelligent clothing.
Key words:  liquid metal    conductivity    flexibility    wearable device    smart clothing
出版日期:  2022-05-10      发布日期:  2022-05-09
ZTFLH:  TS101.8  
通讯作者:  76echo@vip.sina.com   
作者简介:  温泽明,2018年6月毕业于青岛大学,获得工学学士学位。现为北京服装学院材料设计与工程学院硕士研究生,在王越平教授的指导下进行研究。目前主要研究领域为液态金属在可拉伸纱线及织物上的应用。
肖红,军事科学院系统工程研究院军需工程技术研究所,技术7级/专业技术大校/高级工程师。兼任军事科学院、东华大学、天津工业大学、北京服装学院硕士研究生导师。一直从事军用被装功能纤维(纱线)及其面料、伪装纺织材料及个体救生装备的研究,主持/参研全军后勤重点、国家自然科学基金、国家重点研发计划、国军标等项目20余项。获军队和武警科技进步二等奖各1项(R1/R4)、桑麻纺织科技一等奖1项(R1)、中纺联科技进步一等奖1项(R6)、二等奖3项(R3/R3/R5)、化纤工业协会"恒逸基金"论文一等奖(R1)、陈维稷及中纺学会优秀论文奖3次。2015全国纺织(青年)科技创新领军人才,2017年中国纺织青年科技奖,湖北省楚天学者、讲座教授,2018军事科学院学科"拔尖培养对象"推荐。发表论文130篇,SCI/EI收录30篇。授权发明专利20项,制定国/部军标13项。
引用本文:    
温泽明, 陈剑英, 王越平, 肖红. 镓基液态金属在可穿戴器件与智能服装上的应用研究进展[J]. 材料导报, 2022, 36(9): 20080043-5.
WEN Zeming, CHEN Jianying, WANG Yueping, XIAO Hong. Research Progress on Applications of Gallium-based Liquid Metal in Wearable Devices and Smart Clothing. Materials Reports, 2022, 36(9): 20080043-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080043  或          http://www.mater-rep.com/CN/Y2022/V36/I9/20080043
1 Zhao Y R, Xiao H, Chen J Y. Journal of Textile Research, 2020,41(3),45(in Chinese).
赵亚茹,肖红,陈剑英.纺织学报,2020,41(3),45.
2 Silva J, Ribeiro S, Lanceros-Mendez S, et al. Composites Science and Technology, 2011, 71(5),643.
3 Mu S P. Studies on preparation and properties of Ag/PANI/PET compo-site. Master's Thesis, Donghua University,China, 2016(in Chinese).
穆世鹏. 银/聚苯胺/涤纶复合材料的制备及其性能研究.硕士学位论文, 东华大学,2016.
4 Li L Q. Preparation and characterization of conductive cotton fabric based on carbon black and carbon nanotubes. Master's Thesis, Southwest University,China,2018(in Chinese).
李兰倩. 基于炭黑和碳纳米管导电棉织物的制备与表征.硕士学位论文, 西南大学,2018.
5 Barakzehi M, Montazer M, Sharif F, et al. Electrochimica Acta, 2020, 336,135743.
6 Shi Y L, Li N N, Fu Y J, et al. Journal of Textile Research, 2016,37(4),165(in Chinese)
师艳丽,李娜娜,付元静,等. 纺织学报, 2016,37(4),165.
7 Zhang S, Miao X H,Sun W. Journal of Textile Research, 2018,39(2),73(in Chinese)
张舒,缪旭红,孙婉.纺织学报, 2018,39(2),73.
8 Ma H J, Tian B H, He Y. Cotton Textile Technology, 2020,48(2),80(in Chinese).
马菡婧,田宝华,何源. 棉纺织技术, 2020,48(2),80.
9 Ji Y L, Xu J T, Yan H L,et al. Journal of Engineering Thermophysics,2020,41(6),1497(in Chinese)
纪玉龙,徐建桐,闫慧龙,等. 工程热物理学报,2020,41(6),1497.
10 Dickey M D. ACS Applied Materials & Interfaces, 2014, 6(21),18369.
11 Hirsch A, Dejace L, Michaud H O, et al. Accounts of Chemical Research, 2019, 52(3),534.
12 Morley N B, Burris J, Cadwallader L C, et al. Review of Entific Instruments, 2008, 79(5), 056107.
13 Plevachuk Y, Sklyarchuk V, Shevchenko N, et al. International Journal of Materials Research, 2015, 106(1), 66.
14 Plevachuk Y, Sklyarchuk V, Eckert S, et al. Journal of Chemical & Engineering Data, 2014, 59(3),757.
15 Eaker C B, Dickey M D. Applied Physics Reviews, 2016, 3(3),149.
16 Roy C K, Bhavnani S, Hamilton M C, et al. International Journal of Heat & Mass Transfer, 2015, 85, 996.
17 Watson A M, Cook A B, Tabor C E. Advanced Engineering Materials, 2019, 21(10), 1900397.
18 Elton E S, Reeve T C, Thornley L E, et al. Journal of Rheology, 2020, 64(1), 119.
19 Khan M R, Eaker C B, Bowden E F, et al. Proceedings of the National Academy of Sciences, 2014, 111(39),14047.
20 Khondoker M A H, Sameoto D. Smart Materials & Structures, 2016, 25(9), 093001.
21 Chen S, Liu J. Journal of Physical Chemistry B, 2019,123(10), 2439.
22 Chen S, Ding Y J, Zhang Q L, et al. Science China Press, 2019, 62(3), 407.
23 Zhang N, Lin J, Wang T J, et al. Electronic Components & Materials, 2018,37(7), 1(in Chinese).
张楠,林健,王同举,等. 电子元件与材料, 2018,37(7), 1.
24 Thrasher C, Farrell Z, Morris N, et al. Advanced Materials, 2019, 31(40), 1903864.
25 Liu T. Journal of Microelectromechanical Systems, 2012, 21(2), 443.
26 Chen Y, Zhou T, Li Y, et al. Advanced Functional Materials, 2018, 28(8),1706277.
27 Dickey M D, Chiechi R C, Larsen R J, et al. Advanced Functional Materials, 2008, 18, 1097.
28 Zhu S, So J H, Mays R, et al. Advanced Functional Materials, 2013, 23, 2308.
29 Zhou Y L, Liu Y W, Guo Z Y, et al. Journal of Functional Materials, 2018, 49(3), 5(in Chinese)
周酉林, 刘宜伟, 郭智勇, 等. 功能材料, 2018, 49(3), 5.
30 Yang J B. Design, manufacture and application of flexible electrode circuit based on liquid metal. Master's Thesis, Shenzhen University,China,2018(in Chinese).
杨锦斌. 基于液态金属的柔性电极电路的设计、制造及应用. 硕士学位论文, 深圳大学,2018.
31 Wang Y, Sun G, Yang J, et al. AIP Advances, 2020, 10(1), 015016.
32 Kazem N, Hellebrekers T, Majidi C. Advanced Materials, 2017, 29(27), 1605985.
33 Bartlett M D, Fassler A, Kazem N, et al. Advanced Materials, 2016, 28(19), 3726.
34 Ordonez R C, Hayashi C K, Torres C M, et al. IEEE Transactions on Electron Devices, 2016, 63(10), 1.
35 Guo R, Wang H, Sun X, et al. ACS Applied Materials & Interfaces, 2019, 11(33),30019.
36 Li H Y, Liu J. Electro-Mechanical Engineering, 2014(1), 33(in Chinese).
李海燕, 刘静. 电子机械工程, 2014(1), 33.
37 Yang Y, Sun N, Wen Z, et al. ACS Nano, 2018, 12(2), 2027.
38 Lu C X, Lyu S S, Zhang X, et al. China Synthetic Fiber Industry, 2020,43(3), 1(in Chinese).
卢旭晨,吕莎莎,张欣,等.合成纤维工业,2020,43(3), 1.
39 Maenaka K. Sensors and Materials, 2018, 30(5), 947.
40 Jeong S H, Hagman A, Hjort K, et al. Lab on a Chip, 2012, 12(22), 4657.
41 Lu T, Markvicka E, Jin Y, et al. ACS Applied Materials & Interfaces, 2017,9(26), 22055.
42 Jeong Y R, Kim J, Xie Z, et al. Npg Asia Materials, 2017, 9(10), e443.
43 Wang M, Trlica C, Khan M R, et al. Journal of Applied Physics, 2015, 117(19), 194901.
44 Hirsch A, Dejace L, Michaud H O, et al. Accounts of Chemical Research, 2019, 52(3), 534.
[1] 侯朝霞, 王凯, 屈晨滢, 李思瑶, 王晓慧, 王健, 王美涵. 柔性二次电池的研究进展[J]. 材料导报, 2022, 36(9): 20070276-6.
[2] 张姣娇, 王晓君, 张卓雅. 利用碳纳米纤维/Pt纳米片构建柔性电极用于葡萄糖检测[J]. 材料导报, 2022, 36(9): 21010143-6.
[3] 晋潞潞, 孙婷婷, 王连军, 江莞. n型掺杂不同管径碳纳米管薄膜的热电性能研究及其器件的制备[J]. 材料导报, 2022, 36(6): 21010212-5.
[4] 刘璐, 王李波, 刘大荣, 胡前库, 周爱国. 二维纳米材料在柔性压阻传感器中的应用研究进展[J]. 材料导报, 2022, 36(4): 20020137-10.
[5] 王心桥, 张健, 苏彤, 赵兴, 郭永权. 先进液态金属电池熔盐电解质的设计[J]. 材料导报, 2022, 36(1): 20090223-7.
[6] 孙静, 李韩飞, 郭培志, 李光林, 刘志远. 柔性可拉伸导电材料用于生理信号获取与反馈的研究简述[J]. 材料导报, 2021, 35(5): 5158-5165.
[7] 郑成燕, 张典堂, 梁燕民, 钱坤. 织物/聚脲柔性复合材料抗爆性能研究进展[J]. 材料导报, 2021, 35(23): 23205-23211.
[8] 王成志, 高凤雨, 于庆君, 易红宏, 倪书权, 唐晓龙. 三聚氰胺海绵基高效柔性脱硝催化材料的合成及性能研究[J]. 材料导报, 2021, 35(21): 21079-21084.
[9] 耿继业, 蓝嘉昕, 刘通, 诸葛祥群, 罗志虹, 李义兵, 罗鲲. 3D打印聚氨酯微流道封装镓基液态金属柔性导线及其性能[J]. 材料导报, 2021, 35(20): 20040-20044.
[10] 杨帆, 丁建伟, 刘豪, 邱长军, 李胜. 液态GaIn合金对铜的腐蚀机理与防腐蚀技术研究[J]. 材料导报, 2021, 35(20): 20076-20080.
[11] 陈利尧, 赵晓明. 柔性X射线防护材料的研究现状及展望[J]. 材料导报, 2021, 35(15): 15088-15093.
[12] 张曦元, 康建立. 柔性自支撑纳米结构电极的研究进展[J]. 材料导报, 2020, 34(Z2): 30-36.
[13] 吴志锋, 韩毅, 杨明明, 李国栋, 王忠杰, 刘良, 谢文明. 柔性钨橡胶对手套箱管线辐射热点的屏蔽效果研究[J]. 材料导报, 2020, 34(Z2): 572-575.
[14] 马香钰, 夏广波, 邱琳琳, 董丽卡, 丁明乐, 杜平凡. 纤维及织物基柔性可穿戴器件研究进展[J]. 材料导报, 2020, 34(Z1): 490-497.
[15] 金胜男, 孙婷婷, 王明辉, 江莞. 电化学沉积法制备PEDOT/PEDOT∶PSS基柔性纳米纤维膜及其热电性能[J]. 材料导报, 2020, 34(8): 8184-8187.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed