Please wait a minute...
材料导报  2022, Vol. 36 Issue (9): 21010143-6    https://doi.org/10.11896/cldb.21010143
  无机非金属及其复合材料 |
利用碳纳米纤维/Pt纳米片构建柔性电极用于葡萄糖检测
张姣娇1, 王晓君2,*, 张卓雅1
1 太原理工大学生物医学工程学院,山西 晋中 030600
2 太原理工大学机械与运载工程学院,太原 030024
Construction of Flexible Electrode Using Carbon Nanofibers/Pt Nanosheets for Glucose Detection
ZHANG Jiaojiao1, WANG Xiaojun2,*, ZHANG Zhuoya1
1 College of Biomedical Engineering, Taiyuan University of Technology, Jinzhong 030600, Shanxi, China
2 College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, China
下载:  全 文 ( PDF ) ( 4658KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 糖尿病是一种以高血糖为特征的代谢性疾病,严重威胁人类健康。血糖指标的监测在糖尿病的预防、诊断及治疗中发挥着重要作用。以聚丙烯腈为碳源,通过静电纺丝与热处理工艺制备了柔性碳纳米纤维膜,并利用恒电位电沉积法在自支撑碳纳米纤维膜上负载Pt纳米片构建柔性无酶葡萄糖传感器。结果表明,碳纳米纤维表面光滑,Pt纳米片逐渐生长并填满纳米纤维间隙,单个纳米片长100~200 nm,宽约100 nm。构建的柔性无酶葡萄糖传感器对葡萄糖的线性检测范围为7.5~87.5 mmol/L,灵敏度为6.41 μA·(mmol/L)-1·cm-2,最低检测限为14.04 μmol/L,同时传感器表现出良好的抗干扰性、重复性和稳定性。该柔性电极材料制备方法简单,结合柔性电极和无酶传感器的优势,避免传统酶传感器重复性、稳定性及抗干扰性能差的问题,为柔性葡萄糖传感器的构建提供了可能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张姣娇
王晓君
张卓雅
关键词:  柔性无酶传感器  碳纳米纤维  静电纺丝  葡萄糖  铂纳米片    
Abstract: Diabetes is a metabolic disease characterized by hyperglycemia, which seriously threatens human health. Blood glucose monitoring plays an important role in the prevention, diagnosis and treatment of diabetes. The flexible carbon nanofibers were prepared by combination of electrospinning and heat treatment using polyacrylonitrile as the carbon source. Subsequently, the nonenzyme glucose sensor was constructed by loading Pt nanosheets directly on the surface of self-supporting carbon nanofibers by potentiostatic electrodeposition method. The results indicated that the surface of the nanofibers was smooth, and the Pt nanosheets gradually grew to fill the gap of carbon nanofibers. The length of single nanosheet was 100—200 nm, and the width was about 100 nm. The electrochemical results indicated that the linear detection range of the nonenzyme glucose biosensor electrode was 7.5—87.5 mmol/L with a low detection limit of 14.04 μmol/L and a sensitivity of 6.41 μA·(mmol/L)-1·cm-2. In addition, the sensor showed the excellent anti-interference ability, high repeatability and excellent storage stability. The fabricated sensor can combine the advantages of flexible electrode and nonenzyme sensor, and provides the possibility for the construction of flexible glucose sensor.
Key words:  flexible nonenzymatic sensor    carbon nanofibers    electrospinning    glucose    platinum nanosheets
出版日期:  2022-05-10      发布日期:  2022-05-09
ZTFLH:  O657  
基金资助: 山西省重点研发计划项目(201703D421019); 山西省应用基础研究项目(201801D121281)
通讯作者:  wangxiaojun@tyut.edu.cn   
作者简介:  张姣娇,1996年生,太原理工大学生物医学工程学院研究生。主要研究方向为导电纳米碳纤维材料的制备及应用。
王晓君,太原理工大学机械与运载工程学院教授、硕士研究生导师。1997年获太原理工大学工程力学专业学士学位,2010年获太原理工大学生物医学工程专业博士学位。1997年参加工作以来一直从事基础力学的教学工作。主要从事生物力学、一般力学及生物传感器的研究。在国内外核心期刊以及学术会议发表论文30余篇,其中SCI及EI收录10余篇,撰写专著1部,授权专利5项。主持并完成国家自然科学基金青年基金1项,并作为主要成员参与了多项国家自然科学基金重点项目及面上项目。
引用本文:    
张姣娇, 王晓君, 张卓雅. 利用碳纳米纤维/Pt纳米片构建柔性电极用于葡萄糖检测[J]. 材料导报, 2022, 36(9): 21010143-6.
ZHANG Jiaojiao, WANG Xiaojun, ZHANG Zhuoya. Construction of Flexible Electrode Using Carbon Nanofibers/Pt Nanosheets for Glucose Detection. Materials Reports, 2022, 36(9): 21010143-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010143  或          http://www.mater-rep.com/CN/Y2022/V36/I9/21010143
1 Yu M, Zhao K, Zhu X, et al. Biosensors and Bioelectronics,2017,95,41.
2 Zhang Y, Yuan T, Li L, et al. Journal of Agricultural and Food Chemistry,2014, 62(28), 6687.
3 Wu W, Mitra N, Yan E C Y, et al. ACS Nano, 2010, 4(8), 4831.
4 Qiao F, Qi Q, Wang Z, et al. Sensors and Actuators B: Chemical, 2016, 229, 379.
5 Wang N, Han Z, Fan H, et al. RSC Advances,2015, 5(111), 91302.
6 Clark J L C, Lyons C. Annals of the New York Academy of Sciences,1962, 102(1), 29.
7 Updike S J, Hicks G P. Science, 1967, 158(3798), 270.
8 Keerthi M, Mutharani B, Chen S M, et al. Microchimica Acta, 2019, 186(12), 1.
9 Guo M Q. Fabrication and study of performance of nonenzymatic glucose sensor based on Pt-based micro-nano structure. Ph.D. Thesis, Tianjin University, China, 2012(in Chinese).
郭美卿. Pt基微纳结构无酶葡萄糖传感器的构建和性能研究. 博士学位论文, 天津大学, 2012.
10 Chen C, Ran R, Yang Z, et al. Sensors and Actuators B: Chemical, 2018, 256, 63.
11 Zhao H, Zhou C, Teng Y, et al. Applied Surface Science,2011, 257(8), 3793.
12 Chen H, Yuan R, Chai Y, et al. Biotechnology Letters,2010, 32(10), 1401.
13 Zhai D, Liu B, Shi Y, et al. ACS Nano, 2013, 7(4), 3540.
14 Liang J, Xi X, Ji W, et al. Material Sciences, 2019, 9(11), 984(in Chinese).
梁晶, 奚馨, 纪伟,等. 材料科学, 2019, 9(11), 984.
15 Bae C W, Toi P T, Kim B Y, et al. ACS Applied Materials & Interfaces,2019, 11(16), 14567.
16 Lee H, Song C, Hong Y S, et al. Science Advances,2017,3(3),e1601314.
17 Gao W, Emaminejad S, Nyein H Y Y, et al. Nature,2016,529(7587),509.
18 Rafatmah E, Hemmateenejad B. Sensors and Actuators B: Chemical, 2020, 304, 127335.
19 Xu W N. Study on flexible non-enzymatic biosensor based on oxide nanostructures directly grown on carbon fiber fabric. Master's Thesis, Chongqing University, China, 2016(in Chinese).
许伟娜. 基于碳布上生长氧化物纳米结构的柔性无酶生物传感器研究. 硕士学位论文,重庆大学, 2016.
20 Xu W, Dai S, Wang X, et al. Journal of Materials Chemistry B,2015, 3(28), 5777.
21 Cheng S, DelaCruz S, Chen C, et al. Sensors and Actuators B: Chemical, 2019, 298, 126860.
22 Cheng S, Gao X, DelaCruz S, et al. Journal of Materials Chemistry B, 2019, 7(32), 4990.
23 Liu F, Wang P, Zhang Q, et al. Analytical and Bioanalytical Chemistry,2018, 410(29), 7663.
24 Sun S, Shi N, Liao X, et al. Applied Surface Science,2020,529,147067.
25 Guzsvány V, Anojčić J, Radulović E, et al. Microchimica Acta, 2017, 184(7), 1987.
26 Ekabutr P, Chailapakul O, Supaphol P. Journal of Applied Polymer Science, 2013, 130(6), 3885.
27 Lee K B, Kim J R, Park G C, et al. Sensors, 2017, 17(1), 42.
28 Liu Z Y. Research and preparation of flexible micro-electrode with a dimensional nano-pillar arrays and its glucose sensor. Master's Thesis, Wuyi University, China, 2016(in Chinese).
刘忠银. 纳米柱阵列柔性微电极及其葡萄糖传感器的研究与制备. 硕士学位论文, 五邑大学, 2016.
29 Chen K, Chou W, Liu L, et al. Sensors, 2019, 19(17), 3676.
30 Zhang X, Liu D, Yu B, et al. Sensors and Actuators B: Chemical, 2016, 224, 103.
31 Li Y, Zhang M, Zhang X, et al. Nanomaterials, 2015, 5(4), 1891.
32 Guo J, Liu J, Dai H, et al. Journal of Colloid and Interface Science, 2017, 507, 154.
33 Liu Y, Jiang G, Sun S, et al. Journal of Electroanalytical Chemistry, 2017, 804, 212.
34 Joh H I, Song H K, Lee C H, et al. Carbon, 2014, 70, 308.
35 Zhao X, Nie G, Luan Y, et al. Journal of Alloys and Compounds, 2019, 808, 151737.
36 Zhang J, Su L, Ma L, et al. Journal of Electroanalytical Chemistry,2017, 790, 40.
37 Ju Y W, Choi G R, Jung H R, et al. Electrochimica Acta, 2008, 53(19), 5796.
38 Shim W G, Kim C, Lee J W, et al. Journal of Applied Polymer Science,2006, 102(3), 2454.
39 Friedlander H N, Peebles Jr L H, Brandrup J, et al. Macromolecules, 1968, 1(1), 79.
40 Yusof N, Ismail A F. Journal of Analytical and Applied Pyrolysis, 2012, 93, 1.
41 He W, Sun Y, Xi J, et al. Analytica Chimica Acta, 2016, 903, 61.
42 Sreekumar A, Navaneeth P, Suneesh P V, et al. Microchimica Acta, 2020, 187(2), 1.
43 Shu H, Cao L, Chang G, et al. Electrochimica Acta, 2014, 132, 524.
44 Zhao Y, Chu J, Li S H, et al. Electroanalysis, 2014, 26(3), 656.
45 Ridhuan N S, Nor N M, Razak K A, et al. Journal of Solid State Electrochemistry, 2021, 25(3), 1065.
46 Ming Z, Shang L, Li B, et al. Biosensors & Bioelectronics,2009,24,442.
[1] 魏宁, 铁生年. 功能化碳纳米纤维增强芒硝基相变储能材料的热性能[J]. 材料导报, 2022, 36(6): 21050177-7.
[2] 陈卫英, 陈真勇, 杨在君, 匙峰, 黎云祥. 胶原-乙酸混合溶液静电纺丝可纺性及电纺胶原膜力学特性评估[J]. 材料导报, 2021, 35(z2): 516-519.
[3] 岳青, 王绍德, 徐飞, 刘涛. 静电纺丝技术及其在各领域中的应用[J]. 材料导报, 2021, 35(Z1): 594-599.
[4] 朱浩彤, 刘玲伟, 闫铭, 张鸿, 郭静, 夏英. 纤维气凝胶的分类、制备工艺及应用现状[J]. 材料导报, 2021, 35(23): 23057-23067.
[5] 徐梦婷, 马艳, 刘祖兰, 陈磊, 代方银, 李智. 后处理对静电纺丝素纤维膜性能的影响[J]. 材料导报, 2021, 35(14): 14180-14184.
[6] 李林刚, 胡雪燕, 李刚, 蔡以兵. 电纺Al2O3纳米纤维毡的制备及染料吸附脱色性能[J]. 材料导报, 2021, 35(12): 12008-12013.
[7] 黄青武, 吴越, 宋武林, 丁雨葵. 碳纤维的电纺制备及结构表征[J]. 材料导报, 2020, 34(Z1): 164-168.
[8] 金胜男, 孙婷婷, 王明辉, 江莞. 电化学沉积法制备PEDOT/PEDOT∶PSS基柔性纳米纤维膜及其热电性能[J]. 材料导报, 2020, 34(8): 8184-8187.
[9] 陈雪微, 刘巍, 高洪达. 离子液体在不同溶剂中对PVB静电纺丝的影响[J]. 材料导报, 2020, 34(24): 24160-24164.
[10] 王桂平, 喻伯鸣, 敖日格勒. 木质素基磁性多孔复合纳米碳纤维的制备及微波吸收性能[J]. 材料导报, 2020, 34(20): 20159-20164.
[11] 汪心坤, 赵芳, 王建江. 煅烧温度对Zn0.96Co0.04O纳米纤维吸波性能的影响[J]. 材料导报, 2020, 34(14): 14034-14038.
[12] 颜慧琼, 张薇, 王月, 何淞明, 赵芮, 廖月, 陈秀琼. 基于氧化-还原胺化反应改性海藻酸盐制备载药性电纺纳米复合纤维[J]. 材料导报, 2020, 34(12): 12139-12145.
[13] 王艳芝, 张玲杰, 张一风, 张旺玺. 电纺制备聚丙烯腈/氮化硼杂化复合纤维及其结构、性能研究[J]. 材料导报, 2020, 34(12): 12158-12162.
[14] 于翔, 桂久青, 张雪寅, 严亮, 卢晓龙. 尼龙66/纳米羟基磷灰石复合纤维膜的制备及骨缺损修复性能评价[J]. 材料导报, 2020, 34(12): 12185-12190.
[15] 汪心坤, 赵芳, 王建江. Zn1-xCexO纳米纤维的电纺制备及其红外雷达兼容隐身性能[J]. 材料导报, 2019, 33(Z2): 83-88.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed