Please wait a minute...
材料导报  2021, Vol. 35 Issue (14): 14180-14184    https://doi.org/10.11896/cldb.20060036
  高分子与聚合物基复合材料 |
后处理对静电纺丝素纤维膜性能的影响
徐梦婷1,2,3, 马艳1,2,3, 刘祖兰1,2,3, 陈磊1,2,3, 代方银1,2,3, 李智1,2,3,*
1 西南大学家蚕基因组生物学国家重点实验室,重庆 400715
2 西南大学蚕桑纺织与生物质科学学院, 重庆市生物质纤维材料与现代纺织工程技术研究中心,重庆 400715
3 西南大学生物技术学院,农业部蚕桑生物学与遗传育种重点实验室,重庆 400715
The Effect of Post-treatment on the Properties of Electrospun Fibroin Film and Its Mechanism
XU Mengting1,2,3, MA Yan1,2,3, LIU Zulan1,2,3, CHEN Lei1,2,3, DAI Fangyin1,2,3, LI Zhi1,2,3,*
1 State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
2 Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
3 Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biote chnology, Southwest University, Chongqing 400715, China
下载:  全 文 ( PDF ) ( 4892KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 静电纺丝素纤维膜在载药、组织工程及多种电池的研究中具有广泛的应用。静电纺丝素纤维膜在制备过程中,需要后处理以保持纤维的形状及提升纤维膜的性能。本研究以乙醇和甘油对静电纺丝素纤维膜进行后处理,并通过SEM、FTIR、XRD、TGA等表征手段系统研究了不同后处理条件对静电纺丝素纤维膜的结构及性能的影响,并分析及探讨了其影响机制。结果表明:仅用75%(体积分数)乙醇后处理可使丝素蛋白分子β折叠含量增大,纤维膜断裂强度显著增强;仅用甘油后处理可使丝素蛋白分子链无规卷曲度提高,纤维膜的断裂伸长率显著提高,亲水性大大增强;而用75%乙醇结合不同浓度的甘油对静电纺丝素纤维膜进行后处理可调控其力学性能,使其更能满足在不同领域的应用需求。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐梦婷
马艳
刘祖兰
陈磊
代方银
李智
关键词:  丝素蛋白  静电纺丝    乙醇  甘油    
Abstract: Electrospun fibroin membrane has been widely used in drug loading, tissue engineering and battery. In the preparation of electrospun membrane, post-treatment is needed to keep the shape of the fiber and improve the performance of the membrane. In this paper, silk fibroin protein was extracted from natural silk, regenerated silk fibroin membrane was prepared by electrospinning, and the membrane was post treated with ethanol and glycerin. The conformation change of silk fibroin membrane was studied by SEM, FTIR, XRD, TGA firstly, then the physical and chemical properties of silk fibroin membrane were tested. Impacts from different post-treatment methods were explored. The results show that 75vol% ethanol makes the regenerated silk fibroin fiber bend and deform, the molecular crystallinity and the tensile strength increases; glycerin makes the fiber shrink and relax, the random curvature of the molecular chain increases, the material ductility is better, and the hydrophilicity is greatly enhanced. The post-treatment of silk fibroin membrane through different combinations can improve the performance of silk fibroin membrane.
Key words:  silk fibroin    electrospun    membrane    ethanol    glycerin
               出版日期:  2021-07-25      发布日期:  2021-08-03
ZTFLH:  TQ 142.2  
基金资助: 2019年重庆市留创计划创新类资助项目(cx2019090);家蚕基因组生物学国家重点实验室开放课题资助(sklsgb-2019KF13);中央高校基本业务费项目(XDJK2018B015)
通讯作者:  * tclizhi@swu.edu.cn   
作者简介:  徐梦婷,硕士研究生,研究方向为纤维新材料开发与利用。
李智,博士,副教授,研究方向为功能纤维与生物医用材料。
引用本文:    
徐梦婷, 马艳, 刘祖兰, 陈磊, 代方银, 李智. 后处理对静电纺丝素纤维膜性能的影响[J]. 材料导报, 2021, 35(14): 14180-14184.
XU Mengting, MA Yan, LIU Zulan, CHEN Lei, DAI Fangyin, LI Zhi. The Effect of Post-treatment on the Properties of Electrospun Fibroin Film and Its Mechanism. Materials Reports, 2021, 35(14): 14180-14184.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060036  或          http://www.mater-rep.com/CN/Y2021/V35/I14/14180
1 Li X, Li L, et al. Polymer Degradation and Stability, 2019, 164, 61.
2 Liu Z, Shang S, Chiu K L, et al. Materials Science and Engineering: C, 2020, 107, 110308.
3 Wang P, He H, Cai R, et al. Carbohydr Polym, 2019, 212, 403.
4 Chen S H, Li Z, et al. Journal of Materials Research, 2019, 34, 1911.
5 Ma Y, Chen L, Dai F Y, et al. Journal of Biomaterials and Tissue Engineering, 2018, 8, 1629.
6 Ma Y, Li Z, Ran R L, et al. Materials Reports, 2018(1), 86(in Chinese).
马艳, 李智, 冉瑞龙, 等.材料导报, 2018(1), 86.
7 Sridhar R, Madhaiyan K, et al. Chemical Society Reviews, 2015, 44, 790.
8 Kadam V V, Wang L, Padhye R. Journal of Industrial Textiles, 2016, 47, 2253.
9 Li C, Wu M, Liu R. Applied Catalysis B: Environmental, 2019,244,150.
10 Alehosseini A, Gómez-Mascaraque L G, Martínez-Sanz M, et al. Food Hydrocolloids, 2019, 87, 758.
11 Ren X, Xu Z, et al. Materials Research Express, 2019, 6, 125409.
12 Tao G, Wang Y J, Cai R, et al. Materials Science & Engineering C-Materials for Biological Applications, 2019, 101, 341.
13 Gao X, Gou J, Zhang L, et al. RSC Advances, 2018, 8, 8181.
14 Jiang Y, Xu M, Yadavalli V K. Biosensors (Basel), 2019, 9(3), 103.
15 Brown J E, Xu D, et al. Biomacromolecules, 2016, 17, 3911.
16 Puerta M, Arango M C, et al. SN Applied Sciences, 2019, 1, 1443.
17 Yusoff N I S M, Wahit M U, Jaafar J, et al. Malaysian Journal of Fundamental and Applied Sciences, 2019, 15, 18.
18 Franca C G, Nascimento V F, Hernandez-Montelongo J, et al. Polymers (Basel), 2018, 10(8), 923.
19 Nogueira G, Rodas A, et al. Bioresour Technol, 2010, 101, 8446.
20 Moraes M A D, Weska R F, et al. Polymers,2010, 2, 719.
21 Wu Z Y, Jin Z M, Xu L Q. Science of Sericulture, 1993, 19(2), 105 (in Chinese).
吴徵宇, 金宗明, 徐力群.蚕业科学, 1993, 19(2), 105.
22 Cebe P, Partlow B P, et al. Acta Biomater, 2017, 55, 323.
23 Jang M J, Um I C. European Polymer Journal, 2017, 93, 761.
24 Yun H, Kim M K, et al. Fibers and Polymers, 2014, 14, 2111.
25 De Moraes M A, Silva M F, Weska R F, et al. Materials Science and Engineering: C, 2014, 40, 85.
26 Wang Y, Wang X, Shi J, et al. RSC Advances, 2015, 5, 101362.
27 Karp J R, Hamerski F, Silva V R. Polymer Engineering & Science, 2018, 58, 1879.
28 Li J, Li S, Wang X, et al. Chinese Chemical Letters, 2019, 30, 239.
29 Moon B M, Choi M J, Sultan M T, et al. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2017, 105, 2136.
[1] 王海威, 张华, 杜祖亮. 二十二酸Langmuir膜诱导KNO3微晶取向生长研究[J]. 材料导报, 2021, 35(Z1): 128-131.
[2] 郭佳乐, 赵齐仲, 田方华, 张垠, 周超, 杨森. 室温交换偏置效应的研究进展[J]. 材料导报, 2021, 35(Z1): 297-301.
[3] 成晨, 赵燕. 柴油乳化水分离材料的研究进展[J]. 材料导报, 2021, 35(Z1): 536-540.
[4] 王凯, 冯东, 赵文波. 尿素醇解法制备甘油碳酸酯催化剂的研究进展[J]. 材料导报, 2021, 35(Z1): 541-547.
[5] 岳青, 王绍德, 徐飞, 刘涛. 静电纺丝技术及其在各领域中的应用[J]. 材料导报, 2021, 35(Z1): 594-599.
[6] 李磊, 刘晓莲, 王利媛, 康卫民, 庄旭品. 无机相拓扑结构对有机-无机复合质子交换膜性能的影响综述[J]. 材料导报, 2021, 35(Z1): 621-627.
[7] 刘炘城, 邵海成, 乔冠军, 陆浩杰, 于刘旭, 张相召, 刘桂武. 氧化铝陶瓷表面连续导电金膜的制备工艺及性能[J]. 材料导报, 2021, 35(8): 8076-8081.
[8] 肖奇, 孙文磊, 刘金朵, 黄海博. Ni60A/WC激光熔覆涂层表面抗蚀行为[J]. 材料导报, 2021, 35(8): 8146-8150.
[9] 姚子成, 肖方锟, 刘兆峰, 张大鹏, 朱桂茹. 石墨炭纳米颗粒改性聚砜支撑层制备正渗透复合膜[J]. 材料导报, 2021, 35(8): 8196-8200.
[10] 李金韩, 余少彬, 石梦童, 汪长征, 王强. 基于TiO2的光阳极材料应用于光催化燃料电池的研究进展[J]. 材料导报, 2021, 35(7): 7048-7055.
[11] 金雪莲, 吴雪梅, 诸葛兰剑, 金成刚. 抑制二次电子发射方法的研究[J]. 材料导报, 2021, 35(7): 7176-7182.
[12] 明帅强, 文庆涛, 高雅增, 闫美菊, 卢维尔, 夏洋. 基于原子层沉积技术制备氧化钽薄膜及其特性研究[J]. 材料导报, 2021, 35(6): 6042-6047.
[13] 同帜, 黄开佩, 杨博文, 张健需. 低成本新型多孔陶瓷膜支撑体的制备及性能[J]. 材料导报, 2021, 35(6): 6054-6059.
[14] 孙延勇, 朱伟芳, 缑敏敏, 郭瑞丽. 埃洛石纳米管结构改性后用于Pebax基质中强化气体分离[J]. 材料导报, 2021, 35(6): 6174-6179.
[15] 陶百福, 王志辉, 郭瑞丽. 基材亲疏水性能对EVOH/LIS复合吸附剂成型结构及提锂性能的影响[J]. 材料导报, 2021, 35(6): 6180-6188.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed