Please wait a minute...
材料导报  2020, Vol. 34 Issue (12): 12139-12145    https://doi.org/10.11896/cldb.19050027
  高分子与聚合物基复合材料 |
基于氧化-还原胺化反应改性海藻酸盐制备载药性电纺纳米复合纤维
颜慧琼1,2, 张薇1, 王月1, 何淞明1, 赵芮1, 廖月1, 陈秀琼1,2
1 海南省水环境污染治理与资源化重点实验室,海口 571158
2 海南师范大学热带药用资源化学教育部重点实验室,海口 571158
Preparation of Drug-loaded Electrospun Composite Nanofibers Based on Oxidation-reductive Amination Reaction Modified Alginate
YAN Huiqiong1,2, ZHANG Wei1, WANG Yue1, HE Songming1, ZHAO Rui1, LIAO Yue1, CHEN Xiuqiong1,2
1 Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Haikou 571158, China
2 Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, China
下载:  全 文 ( PDF ) ( 10389KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以辛胺为疏水改性剂,采用氧化-还原胺化反应制得具有两亲性的海藻酸衍生物(RAOA)。通过FTIR、1H NMR、荧光光谱和光学接触角测量仪对RAOA的结构和性能进行表征。进而,以聚乙烯醇(PVA)为助纺剂,对疏水改性的RAOA进行电纺性能的研究。通过光学接触角测量仪、电导率仪、流变仪和扫描电子显微镜对RAOA/PVA纺丝液的物理性能和与之相应的RAOA/PVA纳米复合纤维的形貌进行了测试,考察了该电纺纳米复合纤维对疏水性布洛芬的负载和释药性能。结果表明,辛胺成功接枝到海藻酸钠(SA)分子链上,RAOA的临界聚集浓度为0.43 g/L,说明RAOA具有良好的两亲性。氧化-还原胺化反应改性RAOA不能从根本上改变单一RAOA溶液的可纺性,但是它可以改善RAOA/PVA纺丝液的电纺性能,提高RAOA在RAOA/PVA电纺纳米复合纤维中的含量。载药后的SA/PVA电纺纳米复合纤维在释药初期有突释行为,但改性后的RAOA可以有效地减缓布洛芬的释放速度,提高其缓释性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
颜慧琼
张薇
王月
何淞明
赵芮
廖月
陈秀琼
关键词:  氧化-还原胺化反应  海藻酸衍生物  静电纺丝  纳米复合纤维  缓释性能    
Abstract: The amphiphilic alginate derivative (RAOA) was prepared via oxidative-reductive amination using the octylamine as a hydrophobic modifier. The structure and property of RAOA were characterized by FTIR,1H NMR, fluorescence spectrum and optical contact angle measuring instrument. Furthermore, the electrospinning of hydrophobically modified alginate derivative, RAOA, was studied by using PVA as a spinning auxiliary. The physical properties of RAOA/PVA spinning solution and the morphology of corresponding RAOA/PVA electrospun composite nanofibers were determined by optical contact angle measuring instrument, electrical conductivity meter, rheometer and scanning electron microscopy. And the loading and release properties of the electrospun composite nanofibers for hydrophobic ibuprofen were also investigated. Experimental results showed that the octylamine had successfully grafted onto the alginate molecular chains. The critical aggregation concentration measured by fluorescence spectrum was reduced to 0.43 g/L, which demonstrated the good amphipathy of RAOA. The oxidation-reductive amination modification of RAOA could not fundamentally change the spinnability of a single RAOA solution, but it could enhance the content of RAOA in RAOA/PVA electrospun composite nanofibers. The drug-loaded SA/PVA electrospun composite nanofibers would release rapidly at the beginning, but RAOA can effectively retard the drug release rate of ibuprofen, thus improving the sustained release performance of RAOA/PVA electrospun composite nanofibers.
Key words:  oxidation-reductive amination reaction    alginate derivative    electrospinning    composite nanofibers    sustained-release performance
                    发布日期:  2020-05-29
ZTFLH:  O648.2+3  
基金资助: 海南省自然科学基金(219QN209);海南省高等学校科学研究项目(Hnky2019-36);海南师范大学2018年大学生创新训练计划项目(cxcyxj2018004)
通讯作者:  yanhqedu@163.com   
作者简介:  颜慧琼,男,理学博士,副教授。2010年于海南大学化学工程与工艺获得学士学位,2017年7月毕业于海南师范大学化学专业并获得理学博士学位。2017年6月至今在海南师范大学化学与化工学院进行教学科研工作。主要从事缓控释药物剂型开发与应用、海藻多糖的功能化修饰以及基于海藻酸盐复合凝胶的组织工程支架材料与生物传感器的制备与应用。目前在国内外知名期刊发表论文共60余篇,其中SCI收录40余篇。申请国家发明专利 4 项,其中 3 项已授权。
引用本文:    
颜慧琼, 张薇, 王月, 何淞明, 赵芮, 廖月, 陈秀琼. 基于氧化-还原胺化反应改性海藻酸盐制备载药性电纺纳米复合纤维[J]. 材料导报, 2020, 34(12): 12139-12145.
YAN Huiqiong, ZHANG Wei, WANG Yue, HE Songming, ZHAO Rui, LIAO Yue, CHEN Xiuqiong. Preparation of Drug-loaded Electrospun Composite Nanofibers Based on Oxidation-reductive Amination Reaction Modified Alginate. Materials Reports, 2020, 34(12): 12139-12145.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19050027  或          http://www.mater-rep.com/CN/Y2020/V34/I12/12139
1 Hu X L, Liu S, Zhou G Y, et al. Journal of Controlled Release,2014,185,12.
2 Shalumon K T, Anulekha K H, Nair S V, et al. International Journal of Biological Macromolecules,2011,49,247.
3 Han X J, Huang Z M, He C L, et al. Polymer Composites,2006,27,381.
4 Cui W, Li X, Zhou S, et al. Journal of Applied Polymer Science,2007,103,3105.
5 Neppalli R, Marega C, Marigo A, et al. European Polymer Journal,2010,46,968.
6 Pawar S N, Edgar K J. Biomaterials,2012,33(11),3279.
7 Zahedi P, Rezaeian I, Ranaei-Siadat S, et al. Polymers for Advanced Technologies,2010,21,77.
8 Zhang Y, Lim C T, Ramakrishna S, et al. Journal of Materials Science-Materials in Medicine,2005,16,933.
9 Lee K Y, Mooney D J. Progress in Polymer Science,2012,37(1),106.
10 Nie H R, He A H, Zheng J F, et al. Biomacromolecules, 2008,9,1362.
11 Chen X Q, Yan H Q, Sun W, et al. Polymer Bulletin,2015,72,3097.
12 Fang D W, Liu Y, Jiang S, et al. Carbohydrate Polymer,2011,85,276.
13 Bonino C A, Krebs M D, Saquing C D, et al. Carbohydrate Polymer,2011,85,111.
14 Lu J W, Zhu Y L, Guo Z X, et al. Polymer,2006,47,8026.
15 Lee Y J, Shin D S, Kwon O W, et al. Journal of Applied Polymer Science,2007,106,1337.
16 Saquing C D, Tang C, Monian B, et al. Industrialand Engineering Che-mistry Research,2013,52(26),8692.
17 Zhao X, Li J, Feng Y, et al. International Journal of Biological Macromolecules,2018,106,418.
18 Yang J S, Xie Y J, He W. Carbohydrate Polymer,2011,84,33.
19 Gomez C G, Rinaudo M, Villar M A. Carbohydrate Polymer,2007,67,296.
20 Shalumon K T, Anulekha K H, Nair S V, et al. International Journal of Biological Macromolecules,2011,49,247.
21 Islam M S, Karim M R. Colloids and Surfaces A-Physicochemicaland Engineering Aspects,2010,366,135.
22 Singh B, Sharma D K, Gupta A. Applied Clay Science,2009,45,76.
23 Yang J S, Ren H B, Xie Y J. Biomacromolecules,2011,12,2982.
24 Hashimoto T, Suzuki Y, Tanihara M, et al. Biomaterials,2004,25(7),1407.
25 Yan H Q, Chen X Q, Li J C, et al. Carbohydrate Polymer,2016,136,757.
26 Yan H, Li J, Feng Y, et al. Chemical Journal of Chinese Universities,2013,34(9),2164(in Chinese).
颜慧琼,李嘉诚,冯玉红,等.高等学校化学学报.2013,34(9),2164.
27 Chen X Q, Yan H Q, Zhang X Q, et al. China Surfactant Detergent and Cosmetics,2017,47(3),142(in Chinese).
陈秀琼,颜慧琼,张雪琴,等.日用化学工业,2017,47(3),142.
28 Haghi A K, Akbari M. Physica Status Solidi,2007,204,1830.
29 Fang D W, Liu Y, Jiang S, et al. Carbohydrate Polymer,2011,85,276.
30 Ritger P L, Peppas N A. Journal of Controlled Release,1987,5(1),23.
[1] 金胜男, 孙婷婷, 王明辉, 江莞. 电化学沉积法制备PEDOT/PEDOT∶PSS基柔性纳米纤维膜及其热电性能[J]. 材料导报, 2020, 34(8): 8184-8187.
[2] 王艳芝, 张玲杰, 张一风, 张旺玺. 电纺制备聚丙烯腈/氮化硼杂化复合纤维及其结构、性能研究[J]. 材料导报, 2020, 34(12): 12158-12162.
[3] 于翔, 桂久青, 张雪寅, 严亮, 卢晓龙. 尼龙66/纳米羟基磷灰石复合纤维膜的制备及骨缺损修复性能评价[J]. 材料导报, 2020, 34(12): 12185-12190.
[4] 包朝玲, 陈秀琼, 雷梦圆, 柯超然, 张威, 颜慧琼, 林强. 基于湿法球磨改性蒙脱土构建可负载疏水药物的海藻酸盐/有机蒙脱土复合凝胶微球及其释药性[J]. 材料导报, 2020, 34(10): 10171-10176.
[5] 汪心坤, 赵芳, 王建江. Zn1-xCexO纳米纤维的电纺制备及其红外雷达兼容隐身性能[J]. 材料导报, 2019, 33(Z2): 83-88.
[6] 张涛, 孙友谊, 刘亚青. 静电纺丝法制备壳聚糖/聚乙烯醇基复合碳纳米纤维及其电化学性能[J]. 材料导报, 2019, 33(Z2): 516-520.
[7] 李霖, 张旭, 曲飏, 郑维, 刘文娟, 张学斌. 静电纺丝技术与装置的研究进展[J]. 材料导报, 2019, 33(z1): 89-93.
[8] 胡银春, 程一竹, 王仁虎, 殷萌, 魏延, 杜晶晶, 黄棣, 陈维毅. 静电纺Ag@MOF-5/β-CD抗菌纤维膜的制备及性能[J]. 材料导报, 2019, 33(22): 3825-3828.
[9] 康剑, 崔帅, 魏恒勇, 卜景龙, 崔燚, 李慧, 杨柳, 罗婧, 季文玲. 电纺制备ZrO2多孔纤维及其导热性能[J]. 材料导报, 2019, 33(20): 3396-3400.
[10] 黄艳萍, 但年华, 但卫华. 静电纺丝制备胶原基复合纳米医用纤维的研究进展[J]. 材料导报, 2019, 33(19): 3322-3327.
[11] 陈莹, 侯翼, 成来飞. 针对静电纺丝SiC纤维纳米化的溶液参数优化设计[J]. 材料导报, 2019, 33(10): 1619-1623.
[12] 陈曼, 何明, 郭妍婷, 尹国强. 静电纺羽毛角蛋白/聚乙烯醇/聚氧化乙烯纳米纤维膜的交联改性及表征[J]. 《材料导报》期刊社, 2018, 32(8): 1218-1223.
[13] 李森, 王清涛, 于华芹, 徐会君, 杜庆洋. 固相离子交换法制备高效载银分子筛抗菌剂及其抗菌性能[J]. 《材料导报》期刊社, 2018, 32(4): 539-544.
[14] 张雪荣, 胡银春, 席少晖, 王兆伟, 战岩, 黄棣, 胡超凡, 魏延. 静电纺β-环糊精/石墨烯载银抗菌纤维膜的制备与表征[J]. 《材料导报》期刊社, 2018, 32(4): 545-548.
[15] 李婷婷, 闫梦雪, 吴宗翰, 姜茜, 林佳弘. 动态线性电极静电纺PVA纳米纤维的可纺性[J]. 材料导报, 2018, 32(24): 4363-4369.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed