Please wait a minute...
材料导报  2019, Vol. 33 Issue (19): 3322-3327    https://doi.org/10.11896/cldb.17110083
  高分子与聚合物基复合材料 |
静电纺丝制备胶原基复合纳米医用纤维的研究进展
黄艳萍1,2, 但年华1,2, 但卫华1,2
1 四川大学轻纺与食品学院,制革清洁技术国家工程实验室,成都 610065;
2 四川大学生物医学工程技术研究中心,成都 610065
Promising Biomedical Material Based on Collagen Composite ElectrospunNanofibers: a Review
HUANG Yanping1,2, DAN Nianhua1,2, DAN Weihua1,2
1 National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu 610065;
2 The Research Center of Biomedicine Engineering of Sichuan University, Chengdu 610065
下载:  全 文 ( PDF ) ( 1526KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 胶原是细胞外基质的主要组成部分,具有三股螺旋结构,因其免疫原性低、可生物降解等得天独厚的特性而受到科研工作者的关注,被广泛用于生物医用材料领域。然而,胶原内部存在分子内、分子间氢键,离子键,范德华力以及极性基团与非极性基团间的疏水键,使得胶原蛋白仅溶于有限的溶剂中,如稀醋酸、氟代醇(六氟异丙醇或三氟乙醇)、离子液体等,这给胶原的静电纺丝带来了困难。胶原静电纺丝常用的溶剂为氟代醇,但氟代醇的使用往往会在一定程度上破坏胶原的三股螺旋结构。此外,纯胶原静电纺纳米纤维由于缺乏分子间和分子内的交联,存在诸如机械强度不高、易降解等问题,性能往往不够理想。
为了改善胶原纳米纤维的性能,学者们在胶原和有机高分子复合静电纺丝方面开展了大量研究。通过与有机高分子进行复合,胶原纳米纤维的强度得到提升,同时获得了有机高分子的其他特性(弹性、抗菌、耐降解等),拓宽了其在生物医用领域的应用。
天然高分子源于动植物,生物相容性好,其天然的生物结构是合成高分子所不具备的。但天然高分子多为聚电解质,电纺天然高分子比合成高分子困难。将胶原与天然高分子结合制成复合纳米医用纤维,不仅保留了天然高分子的生物相容性,同时还改善了胶原电纺膜的力学性能或使其获得其他功能。目前,研究较多的是胶原与丝素蛋白、壳聚糖、弹性蛋白、透明质酸的共混纺丝。合成高分子具有良好的物理性能、一定的生物相容性、良好的加工性、优异的生产重复性等特点,将其与胶原进行共混纺丝,可提高胶原的可纺性和纤维膜的力学性能,所得复合膜在需要长时间植入的组织工程支架和药物缓释领域均有良好的表现。常用的与胶原共混的合成高分子有聚己内酯、聚环氧乙烷、聚氨酯、聚乳酸-羟基乙酸共聚物、聚(L-乳酸-共-ε-己内酯)、聚乙烯醇。
本文综述了近年来国内外静电纺丝制备胶原复合纳米医用纤维的研究现状,重点介绍了胶原/天然高分子复合纳米纤维和胶原/合成高分子复合纳米纤维的研究进展,并展望了胶原复合纳米纤维的发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄艳萍
但年华
但卫华
关键词:  胶原  静电纺丝  有机高分子  纳米纤维    
Abstract: Collagen with triple helix structure is considered to be a major component of the extracellular matrix, which is widely used in the field of biomedical materials due to its unique characteristics, including low immunogenicity and biodegradability. However, there are intramolecular, intermolecular hydrogen bonds, ionic bonds, van der Waals forces, and hydrophobic bonds between polar groups and non-polar groups inside the collagen, hence it can only be dissolved in limited range of solvents, such as dilute acetic acid, hexafluoroisopropanol and trifluoroethanol, ionic liquid, making it difficult to fabricate collagen nanofibers. Fluoroalcohol is the most commonly used solvent for collagen electrospinning, but it is also prone to destroy the triple helix structure of collagen to some extent. In addition, the lack of intermolecular and intramolecular crosslinking results in the unsatisfactory properties of collagen electrospun nanofibers, e.g. low mechanical strength and high degradation tendency.
In order to improve the performance of collagen nanofibers, researchers have invested considerable efforts in the co-electrospinning of collagen and organic polymer composites. The cooperation of the two materials significantly improves the strength of collagen nanofibers, meanwhile, endows them with other properties of organic polymers (elasticity, antibacterial, degradation resistance, etc.), which further extend their application in the biomedical field.
Natural polymers derived from animals and plants have good biocompatibility, and their natural biological structure is distinctive to synthetic polymers. Nevertheless, natural polymers are mostly polyelectrolytes, making it more difficult to synthesize compared to the synthetic polymers. The composite nanomedical fibers prepared by combining collagen with natural polymers can not only retain the biocompatibility of natural polymers, but also get improved in the mechanical properties of collagen electrospun membranes or obtain other functionalities. In this regard, the blending of collagen with silk fibroin, chitosan, elastin and hyaluronic acid has received major attention. Synthetic polymer has fine physical properties, certain biocompatibility, good processability, and excellent repeatability, thus it can be blended with collagen to improve the spinnability of collagen and the mechanical properties of fiber membranes. The obtained composite membranes were found to exhibit promising potential in the field of tissue engineering scaffolds and drug sustained release requiring long-term implantation. Commonly used synthetic polymers blended with collagen are polycaprolactone, polyethylene oxide, polyurethane, polylactic acid-glycolic acid copolymer, poly(L-lactic acid-co-ε-caprolactone), polyvinyl alcohol.
This review summarizes the global research status of collagen composite nanofibers fabricated by electrospinning method in recent years, focusing on the collagen/natural organic polymer composite nanofibers and the collagen/synthetic organic polymer composite nanofibers. It also provides an outlook over the future prospect.
Key words:  collagen    electropinning    organic polymer    nanofibers
               出版日期:  2019-10-10      发布日期:  2019-08-15
ZTFLH:  R318.08  
基金资助: 国家自然科学基金(51473001);江阴市重点技术研究发展计划(JYKJ3369)
作者简介:  黄艳萍,2016年毕业于四川大学,获得硕士学位。现为四川大学轻纺与食品学院博士研究生,在但卫华教授的指导下进行研究。目前主要研究领域为生物质医用材料。但卫华,四川大学博士,教授,博士研究生导师。享受国务院政府特殊津贴专家、四川省学术技术带头人。现任四川大学生物质与皮革工程系教授、四川大学生物质工程研究所所长、四川大学生物医学工程技术研究中心生物质医用材料研究室主任。《生物医学工程与临床》杂志编委、Journal of Applied Science、Biomaterials、《功能材料》审稿专家。danweihua_scu@126.com
引用本文:    
黄艳萍, 但年华, 但卫华. 静电纺丝制备胶原基复合纳米医用纤维的研究进展[J]. 材料导报, 2019, 33(19): 3322-3327.
HUANG Yanping, DAN Nianhua, DAN Weihua. Promising Biomedical Material Based on Collagen Composite ElectrospunNanofibers: a Review. Materials Reports, 2019, 33(19): 3322-3327.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.17110083  或          http://www.mater-rep.com/CN/Y2019/V33/I19/3322
1 Anton F. U.S. patent 1975,504.1934-10-2.2 Kong B, Mi S. Materials,2016,9(8),614.3 Sell S A, McClure M J, Garg K, et al. Advanced Drug Delivery Reviews,2009,61(12),1007.4 Fullana M J, Wnek G E. Drug Delivery and Translational Research,2012,2(5),313.5 Zheng W, Zhang W, Jiang X. Advanced Engineering Materials,2010,12(9),B451.6 Zhan H Y, Li Z Q, Cai Z S. Fiber chemistry and physics, Beijing Science Press, China,2005(in Chinese).詹怀宇,李志强,蔡再生.纤维化学与物理,科学出版社,2005.7 Li H, Zheng G X, Wang Q F, et al. China Leather,2006,35(3),27(in Chinese)李贺,郑庚修,王秋芬,等.中国皮革,2006,35(3),27.8 Buttafoco L, Kolkman N, Engbers-Buijtenhuijs P, et al. Biomaterials,2006,27(5),724.9 Ma K, Chan C K, Liao S, et al. Biomaterials,2008,29(13),2096.10 Li M, Mondrinos M J, Gandhi M R, et al. Biomaterials,2005,26(30),5999.11 Zhong S, Teo W E, Zhu X, et al. Biomacromolecules,2005,6(6),2998.12 Schofer M D, Boudriot U, Wack C, et al. Journal of Materials Science: Materials in Medicine,2009,20(3),767.13 Ye J, Shi X, Chen X, et al. Journal of Materials Chemistry B,2014,2(27),4226.14 Kim S H, Nam Y S, Lee T S, et al. Polymer,2003,35(2),18.15 Vepari C, Kaplan D L. Progress in Polymer Science,2007,32(8),991.16 Ma R L, Zhao Y M. Advanced Textile Technology,2012,20(2),1(in Chinese).马瑞丽,赵亚梅.现代纺织技术,2012,20(2),1.17 Wang X L, Dai W G, He J X, et al. Journal of Materials Science and Engineering,2012,30(2),287(in Chinese).王晓磊,戴卫国,何建新,等.材料科学与工程学报,2012,30(2),287.18 Ohgo K, Zhao C, Kobayashi M, et al. Polymer,2003,44(3),841.19 Zhou J, Cao C, Ma X, et al. International Journal of Biological Macromolecules,2010,47(4),514.20 Zhu B F, Li W, Lewis R V, et al. Biomacromolecules,2015,16(1),202.21 Khor E, Lim L Y. Biomaterials,2003,24(13),2339.22 Chen Z G, Wang P W, Wei B, et al. Acta Biomaterialia,2010,6(2),372.23 Chang D C, Wang X L, Hou X, et al. Journal of Biomedical Enginee-ring,2008(6),1454(in Chinese).常德才,王晓丽,侯信,等.生物医学工程学杂志,2008(6),1454.24 Robert L, Hornebeck W. Elastin and elastases, CRC Press,1989.25 Boland E D, Matthews J A, Pawlowski K J, et al. Frontiers in Bioscience,2004,9(1422),e32.26 Shi X. Development and performance studies of chitosan modified collagen-hyaluronic acid composite electrospinning film with biomimetic micro-nano structure of denuded amniotic membrane. Ph.D. Thesis, Zhejiang university, China,2013(in Chinese).石鑫.仿去上皮羊膜微纳结构壳聚糖改性胶原—透明质酸复合电纺膜的研制及其性能研究.博士学位论文,浙江大学,2013.27 Kim T G, Chung H J, Park T G. Acta Biomaterialia,2008,4(6),1611.28 Chen Y, Zeng D, Ding L, et al. Chinese Journal of Biochemistry and Molecular Biology,2015(1),72(in Chinese).陈焱,曾迪,丁璐,等.中国生物化学与分子生物学报,2015(1),72.29 Ma H. Biocompatibility of polycaprolactone/chitosan electropun nanofiber scaffold and poly(lactic-co-glycolic acid)/chitosan elcetrospun nanofiber scaffold cultured with schwann cells. Master’s Thesis, Dalian Medical University, China,2014(in Chinese).马昊.聚己内酯-壳聚糖静电纺丝纳米纤维支架与聚乳酸-羟基乙酸-壳聚糖静电纺丝纳米纤维支架同雪旺细胞的生物相容性研究.硕士学位论文,大连医科大学,2014.30 Peng L L, Yang Q, Shen X Y, et al. Synthetic Fiber in China,2008,37(11),25(in Chinese).彭兰兰,杨庆,沈新元,等.合成纤维,2008,37(11),25.31 Yu H, Jia Y, Yao C, et al. International Journal of Pharmaceutics,2014,469(1),17.32 Fang R, Zhang E, Xu L, et al. Journal of Nanoscience and Nanotechnology,2010,10(11),7747.33 Dulnik J, Denis P, Sajkiewicz P, et al. Polymer Degradation and Stability,2016,130,10.34 Zhao X Z, Gao J, Wang L, et al. Melliand China,2015(11),55(in Chinese).赵新哲,高晶,王璐,等.国际纺织导报,2015(11),55.35 Chen Y, Guo Y Y, Gao J, et al. Journal of Donghua University, Natural Sciences,2014(6),739(in Chinese).陈燕,郭蕴仪,高晶,等.东华大学学报(自然科学版),2014(6),739.36 Phipps M C, Clem W C, Catledge S A, et al. PLOS One,2011,6(2),e16813.37 Phipps M C, Clem W C, Grunda J M, et al. Biomaterials,2012,33(2),524.38 Chen R, Huang C, Ke Q F, et al. Colloids and Surfaces B: Biointerfaces,2010,79(2),315.39 Wang S, Banerjee A, Matarlo B, et al. Bioinspired, Biomimetic and Nanobiomaterials,2012,1(4),202.40 Goncalves F, Bentini R, Burrows M C, et al. Materials,2015,8(2),408.41 Zhang M, Li Z Q, Liu L H, et al. Journal of Nanomaterials,DOI:10.1155/2016/9159364.42 Liu S J, Kau Y C, Chou C Y, et al. Journal of Membrane Science,2010,355(1-2),53.43 Chen D W, Hsu Y H, Liao J Y, et al. International Journal of Pharmaceutics,2012,430(1-2),335.44 Ouyang Y M, Huang C, Zhu Y, et al. Journal of Biomedical Nanotech-nology,2013,9(6),931.45 Kim W J, Shin Y M, Park J S, et al. Polymer.-Korea,2012,36(2),124.46 He X M, Fu W, Wang H, et al. Chinese Journal of Clinicians (Electronic edition),2012(22),7095(in Chinese).何晓敏,付炜,王浩,等.中华临床医师杂志(电子版),2012(22),7095.47 Qu J J, Dan W H, Zeng R, et al. Leather Science and Engineering,2006(2),14(in Chinese).曲健健,但卫华,曾睿,等.皮革科学与工程,2006(2),14.48 Xiao S W, Dan N H, Ma W J, et al. Materials Review B: Research Pa-pers,2015,29(3),49(in Chinese).肖世维,但年华,马文杰,等.材料导报:研究篇,2015,29(3),49.49 Shin Y C, Lee J H, Jin L H, et al. Journal of Nanobiotechnology,2015,13(1),21.50 Song W, Markel D C, Wang S X, et al. Nanotechnology,2012,23(11),115101.51 Mehrasa M, Anarkoli A O, Rafienia M, et al. International Journal of Polymeric Materials and Polymeric Biomaterials,2016,65(9),457.52 Fischer R L, McCoy M G, Grant S A. Journal of Materials Science: Materials in Medicine,2012,23(7),1645.
[1] 李霖, 张旭, 曲飏, 郑维, 刘文娟, 张学斌. 静电纺丝技术与装置的研究进展[J]. 材料导报, 2019, 33(z1): 89-93.
[2] 杨帆, 马建中, 鲍艳. 纳米纤维素及其在水凝胶中的研究进展[J]. 材料导报, 2019, 33(7): 1227-1233.
[3] 代培, 马慧玲, 矫阳, 翟茂林, 曾心苗. 纳米碳材料的辐射改性及其应用进展[J]. 材料导报, 2019, 33(3): 375-385.
[4] 康剑, 崔帅, 魏恒勇, 卜景龙, 崔燚, 李慧, 杨柳, 罗婧, 季文玲. 电纺制备ZrO2多孔纤维及其导热性能[J]. 材料导报, 2019, 33(20): 3396-3400.
[5] 王瑞平,袁长龙,陶劲松. 纳米纤维素改性及其在柔性电子方面的应用[J]. 材料导报, 2019, 33(17): 2949-2957.
[6] 陈莹, 侯翼, 成来飞. 针对静电纺丝SiC纤维纳米化的溶液参数优化设计[J]. 材料导报, 2019, 33(10): 1619-1623.
[7] 陈曼, 何明, 郭妍婷, 尹国强. 静电纺羽毛角蛋白/聚乙烯醇/聚氧化乙烯纳米纤维膜的交联改性及表征[J]. 《材料导报》期刊社, 2018, 32(8): 1218-1223.
[8] 王赫, 王洪杰, 王闻宇, 金欣, 林童. 聚丙烯腈基碳纳米纤维在超级电容器电极材料中的应用研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 730-734.
[9] 张雪荣, 胡银春, 席少晖, 王兆伟, 战岩, 黄棣, 胡超凡, 魏延. 静电纺β-环糊精/石墨烯载银抗菌纤维膜的制备与表征[J]. 《材料导报》期刊社, 2018, 32(4): 545-548.
[10] 李婷婷, 闫梦雪, 吴宗翰, 姜茜, 林佳弘. 动态线性电极静电纺PVA纳米纤维的可纺性[J]. 材料导报, 2018, 32(24): 4363-4369.
[11] 吴宁, 杨洁, 高杨, 乔志勇, 郑姗姗, 裴晓园, 焦亚男. “龟裂”纳米纤维片/玻纤织物复合预制体的层间渗流特性[J]. 材料导报, 2018, 32(24): 4374-4380.
[12] 白忠祥, 但年华, 但卫华, 高然. 双醛羧甲基纤维素-胶原复合止血材料的研制[J]. 材料导报, 2018, 32(20): 3628-3633.
[13] 何明,窦瑶,陈曼,尹国强,崔英德,陈循军. 羽毛角蛋白/PVA复合纳米纤维膜的制备及表征[J]. 《材料导报》期刊社, 2018, 32(2): 198-202.
[14] 杜敏, 宋滇, 谢玲, 周愉翔, 李德生, 朱纪欣. 静电纺丝在高效可逆离子电池储能中的应用[J]. 材料导报, 2018, 32(19): 3281-3294.
[15] 洪雅真, 杨丁柱. 聚乳酸纳米纤维支架的生物相容性及促细胞成软骨分化[J]. 材料导报, 2018, 32(18): 3239-3243.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[10] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed