Please wait a minute...
材料导报  2022, Vol. 36 Issue (6): 21010212-5    https://doi.org/10.11896/cldb.21010212
  无机非金属及其复合材料 |
n型掺杂不同管径碳纳米管薄膜的热电性能研究及其器件的制备
晋潞潞1, 孙婷婷1, 王连军1,2, 江莞1,2,3
1 东华大学材料科学与工程学院,纤维材料改性国家重点实验室,上海 201620
2 东华大学先进玻璃制造技术教育部工程研究中心,上海 201620
3 东华大学功能材料研究所,上海 201620
Study on the Thermoelectric Properties of n-type Doped Carbon Nanotube with Different Diameters and the Fabrication of Their Devices
JIN Lulu1, SUN Tingting1, WANG Lianjun1,2, JIANG Wan1,2,3
1 State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
2 Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University,Shanghai 201620, China
3 Institute of Functional Materials, Donghua University, Shanghai 201620, China
下载:  全 文 ( PDF ) ( 11079KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碳纳米管(Carbon nanotube, CNT)高的导电性和优异的韧性使其在柔性热电领域具有很多优势,其管径、长度等特征对热电性能具有不同影响,深入探索并揭示该影响对制备高性能CNT热电材料具有指导意义。本工作主要研究了n型掺杂态的不同管径的CNT热电性能。结果表明CNT薄膜的n型掺杂效果随管径增大而降低,管径为1~2 nm,长度为5~30 μm的单壁碳纳米管(SWCNT)样品在经20%(质量分数)的聚乙烯亚胺(Polyethyleneimine,PEI)液掺杂12 h后的性能达到最优,其功率因子可达51.5 μW·m-1·K-2,基于此制备的热电器件在温差为8.3 K时,最大输出功率可达21.5 nW。该研究结果可为CNT热电性能的优化及掺杂提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
晋潞潞
孙婷婷
王连军
江莞
关键词:  碳纳米管  柔性热电薄膜  热电器件    
Abstract: The high conductivity and excellent toughness of carbon nanotube (CNT) make them have many advantages in the field of flexible thermoelectrics. Their tube diameter, length and other characteristics have different effects on the thermoelectric performance. The insight into the above content plays practice guiding role in preparing high-performance CNT thermoelectric materials. This work mainly studied the thermoelectric properties of n-type doped CNT with different tube diameters. The results showed that the n-type doping effect of CNT film decreased with the increase of tube diameter. Single-walled carbon nanotube (SWCNT) samples with a tube diameter of 1—2 nm and a length of 5—30 μm had the best thermoelectric performance after being doped with a 20%(mass fraction) PEI solution for 12 hours, and its power factor can reach 51.5 μW·m-1·K-2. Based on the optimized thermoelectric materials, a thermoelectric device was fabricated, which had a maximum output power of 21.5 nW when the temperature difference was 8.3 K. The research provides a reference for achieving n-doping effect and optimizing the thermoelectric properties of CNT.
Key words:  carbon nanotube(CNT)    flexible thermoelectric films    thermoelectric generator (TEG)
出版日期:  2022-03-25      发布日期:  2022-03-21
ZTFLH:  TB34  
基金资助: 上海市科学技术委员会(18JC1411200)
通讯作者:  wanglj@dhu.edu.cn   
作者简介:  晋潞潞,东华大学材料学硕士研究生。2014年9月至2018年6月,在山东建筑大学获得材料科学与工程专业学士学位,于2021年3月获得东华大学材料学硕士学位。研究方向主要围绕碳纳米管材料,开展关于碳纳米管基柔性热电材料及其器件的基础研究。
王连军,东华大学教授,先进玻璃制造技术教育部工程研究中心主任,2002年毕业于大连理工大学获得博士学位,先后在中科院上海硅酸盐研究所、斯德哥尔摩大学做博士后研究,2010年1月由中科院上海硅酸盐研究所引进到东华大学材料学院工作。作为项目负责人先后主持/完成了国家重点研发计划项目子课题、国家自然科学基金、上海科委基础重点项目和杜邦公司合作项目等20余项。在Nat. Commun.、Adv. Mater.、Adv. Funct. Mater.、Nano Energy等期刊上发表研究论文100余篇。已获得授权中国发明专利16项。参与撰写三部英文学术专著(负责一章)。
引用本文:    
晋潞潞, 孙婷婷, 王连军, 江莞. n型掺杂不同管径碳纳米管薄膜的热电性能研究及其器件的制备[J]. 材料导报, 2022, 36(6): 21010212-5.
JIN Lulu, SUN Tingting, WANG Lianjun, JIANG Wan. Study on the Thermoelectric Properties of n-type Doped Carbon Nanotube with Different Diameters and the Fabrication of Their Devices. Materials Reports, 2022, 36(6): 21010212-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010212  或          http://www.mater-rep.com/CN/Y2022/V36/I6/21010212
1 Blackburn J L, Ferguson A J, Cho C, et al.Advance Materials, 2018, 30(11), 1704386.
2 Reilly R M.Journal of Nuclear Medicine, 2007, 48(7), 1039.
3 Dong L Z, Cao L N.Friend of Science Amateurs, 2012(6), 14 (in Chinese).
董莲枝, 曹柳男.科学之友, 2012(6), 14.
4 Hung N T, Nugraha A R T, Hasdeo E H, et al.Physical Review B, 2015, 92(16), 165426.
5 Ma L. The stress-driven self-assembly and instability morphologies of low-dimensional materials. Ph.D. Thesis, University of Science and Technology of China, China, 2020 (in Chinese).
马龙. 应力驱动低维材料的自组装与失稳形貌. 博士学位论文, 中国科学技术大学, 2020.
6 Wei F Y. Study on conductance calculation of carbon nanotubes and relative experients. Master's Thesis, Chongqing University, China, 2006 (in Chinese).
韦逢艳. 碳纳米管电导率的计算及相关的实验研究. 硕士学位论文, 重庆大学, 2006.
7 Ouyang Y. Investigation of the structure for the carbon nanotubes. Ph.D. Thesis, Hunan Normal University, China, 2008 (in Chinese).
欧阳玉. 碳纳米管结构研究. 博士学位论文. 湖南大学, 2008.
8 Bharti M, Singh A, Singh B P, et al.Journal of Power Sources, 2020, 449, 227493.
9 Peng X X, Qiao X, Luo S, et al. Polymers. 2019, 11(8), 1295.
10 Wu R L, Shao Z Z, Chang S L, et al. Spectroscopy and Spectral Analysis, 2014, 34(4), 982.
吴熔琳, 邵铮铮, 常胜利,等.光谱学与光谱分析, 2014, 34(4), 982.
11 Bom D, Andrews R, Jacques D, et al.Nano Letters, 2002, 2(6), 615.
12 Yu C, Murali A, Choi K, et al.Energy & Environmental Science, 2012, 5(11), 9481.
13 Rebelo S L, Guedes A, Szefczyk M E, et al.Physical Chemistry Chemical Physics, 2016, 18(18), 12784.
14 Wu G B. Preparation of N-type organic thermoelectric materials based on single walled carbon nanotubes and organic small molecules. Master's Thesis, Qingdao University of Science and Technology, China, 2017 (in Chinese).
武光宝. 基于单壁碳纳米管与有机小分子复合制备N型有机热电材料. 硕士学位论文, 青岛科技大学, 2017.
15 Freeman D D, Choi K, Yu C.Plos One, 2012, 7(11), e47822.
[1] 李威霖, 王佳, 焦剑. Fe3O4-MWCNTs杂化纳米纸对纤维增强复合材料吸波性能的影响[J]. 材料导报, 2022, 36(5): 20110094-6.
[2] 张晓光, 时海军, 刘杰, 党漭, 何燕. 碳纳米管对膨胀阻燃天然橡胶的燃烧和力学性能的影响[J]. 材料导报, 2022, 36(5): 21010074-6.
[3] 谭洁慧, 邓凌峰, 张淑娴, 李金磊, 王壮, 覃榕荣. 利用微量碳纳米管与石墨烯协同包覆提高LiCoO2正极材料的性能[J]. 材料导报, 2022, 36(2): 20100058-6.
[4] 谢丹丹, 张宝荣, 赵晖, 刘君, 宋安康, 朱国本, 马爱珍, 宋文文, 赵海峰. 镍源对催化酚醛树脂原位生成碳纳米管的影响[J]. 材料导报, 2021, 35(z2): 46-49.
[5] 蒋星宇, 王洁琼, 邱琳琳, 白冰, 金正飞, 梅德强, 杜平凡. 碳基纤维材料在能源领域的应用[J]. 材料导报, 2021, 35(z2): 470-478.
[6] 谭松波, 王响成, 李送送. 柔性含铅γ辐射屏蔽材料的制备及性能[J]. 材料导报, 2021, 35(Z1): 328-330.
[7] 赵中国, 贾旭妙, 程少华, 王渺, 梁攀旭, 李万顺, 贾仕奎. 聚丙烯/碳纳米管复合材料的结晶性能以及外场响应行为[J]. 材料导报, 2021, 35(8): 8191-8195.
[8] 汤琦, 颜桐桐, 孙豪, 王小蕾, 王春芙, 宗成中. 动态硫化制备多壁碳纳米管/热塑性硫化胶复合材料的相态结构及热电效应[J]. 材料导报, 2021, 35(6): 6206-6211.
[9] 张令坤, 孟俊行, 侯成义, 张青红, 李耀刚, 王宏志. 多刺激响应的MWCNTs-CS/AFP双层致动器:能量的转化与应用[J]. 材料导报, 2021, 35(20): 20155-20160.
[10] 石峰, 邹佳朴, 吴子华, 谢华清, 王元元. 热电器件各界面优化方法研究综述[J]. 材料导报, 2021, 35(19): 19049-19054.
[11] 朱若星, 赵廷凯, 折胜飞, 李铁虎. 螺旋型非晶态碳纳米管/双马来酰亚胺树脂(HACNT/BMI)复合材料的制备及吸波机理[J]. 材料导报, 2021, 35(10): 10216-10220.
[12] 王效军, 刘太奇. 碳纳米颗粒对碳纳米管复合材料电热-力学性能的影响[J]. 材料导报, 2020, 34(Z2): 63-66.
[13] 王梦柯, 邱志成, 于春晓. 聚酰胺6/碳纳米复合材料的研究进展[J]. 材料导报, 2020, 34(Z2): 555-561.
[14] 张莉. 碳纳米管的吸附性能及对水中污染物的吸附:综述[J]. 材料导报, 2020, 34(Z1): 72-77.
[15] 吴学志, 尹邦跃, 郑新海. 碳纳米管增强UO2燃料力学性能研究[J]. 材料导报, 2020, 34(Z1): 153-156.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed