Please wait a minute...
材料导报  2022, Vol. 36 Issue (6): 21030152-6    https://doi.org/10.11896/cldb.21030152
  无机非金属及其复合材料 |
1D/2D Co2P/g-C3N4的制备及可见光下光催化分解水析氢性能
向寒宾, 苟浇浇, 吴琳, 曾春梅
西华师范大学化学化工学院,四川 南充 637002
Preparation and Photocatalytic Performance of 1D/2D Co2P/g-C3N4 in Hydrogen Evolution Under Visible Light Irradiation
XIANG Hanbin, GOU Jiaojiao, WU Lin, ZENG Chunmei
College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, Sichuan, China
下载:  全 文 ( PDF ) ( 9432KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本研究以尿素为原料,采用热氧化剥离的方法制备g-C3N4纳米片,然后通过溶剂热和低温磷化两个过程原位制备了Co2P/g-C3N4复合光催化剂。通过XRD、SEM、TEM、XPS等表征了催化剂的物相结构、形貌、元素组成及价态。结果表明,Co2P纳米棒与g-C3N4纳米片组成的1D/2D组装结构的复合光催化剂被成功制备,且两者之间接触良好形成了紧密的异质结。光催化析氢性能测试结果表明,在可见光(λ>420 nm)下,5% Co2P/g-C3N4(质量分数,下同)复合光催化剂的产氢速率达1 155 μmol·h-1·g-1,是母体g-C3N4的96.3倍,且在循环测试中表现出良好的稳定性。通过UV-Vis漫反射光谱、光致发光光谱、瞬态光电流响应曲线和电化学阻抗谱图表征发现,与母体g-C3N4紧密接触的Co2P可以拓宽其光响应范围,还能显著促进界面电荷的迁移,抑制光生电子-空穴对的复合,从而大幅提高g-C3N4的光催化析氢活性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
向寒宾
苟浇浇
吴琳
曾春梅
关键词:  Co2P  石墨相氮化碳  助催化剂  光催化析氢    
Abstract: In this paper, using urea as raw material, g-C3N4 nanosheets were prepared by thermal oxidation stripping method, and then Co2P/g-C3N4 composite photocatalysts were prepared in situ by solvothermal and low temperature phosphating processes. The phase structure, morphology and valence state composition of the catalyst were characterized by XRD, SEM, TEM and XPS. The results indicated that a compact 1D/2D heterojunction was formed between Co2P nanorods and g-C3N4 nanosheets. The results of hydrogen evolution test showed that the hydrogen production rate of 5% Co2P/g-C3N4 composite photocatalyst was up to 1 155 μmol·h-1·g-1 under visible light irradiation (λ>420 nm), which was 96.3 times that of pure g-C3N4, and it also showed a high stability in cycle test. Through UV-Vis diffuse reflectance spectra, photoluminescence spectra, transient photocurrent response curves and electrochemical impedance spectra characterization, it's found that Co2P closely contacted with the host g-C3N4 could broaden its light response range, and significantly promoted the migration of interface charge, restrained the recombination of photogenerated electrons and holes, consequently significantly improved the g-C3N4 photocatalytic activity of hydrogen evolution.
Key words:  Co2P    graphite phase carbon nitride    cocatalyst    photocatalytic hydrogen evolution
出版日期:  2022-03-25      发布日期:  2022-03-21
ZTFLH:  O643  
基金资助: 四川省教育厅重点项目(16ZA0176);西华师范大学英才基金项目(17YC008)
通讯作者:  melzeng@163.com   
作者简介:  向寒宾,西华师范大学物理化学专业研究生,主要研究方向为光催化分解水制氢。
曾春梅,副教授,西华师范大学化学化工学院硕士研究生导师。2015/06于重庆大学化学化工学院获得博士学位;2007/06于山东大学化学化工学院获得硕士学位;2004/06于西华师范大学,化学化工学院获得学士学位。2007年至今任教于西华师范大学化学化工学院。主要研究方向为半导体光催化分解水及光催化降解污染物。
引用本文:    
向寒宾, 苟浇浇, 吴琳, 曾春梅. 1D/2D Co2P/g-C3N4的制备及可见光下光催化分解水析氢性能[J]. 材料导报, 2022, 36(6): 21030152-6.
XIANG Hanbin, GOU Jiaojiao, WU Lin, ZENG Chunmei. Preparation and Photocatalytic Performance of 1D/2D Co2P/g-C3N4 in Hydrogen Evolution Under Visible Light Irradiation. Materials Reports, 2022, 36(6): 21030152-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030152  或          http://www.mater-rep.com/CN/Y2022/V36/I6/21030152
1 Chen S, Huang D L, Xu P,et al. Journal of Materials Chemistry A, 2020, 8, 2286.
2 Zhou Y, Wang W J, Zhang C,et al. Advances in Colloid and Interface Science, 2020, 279, 102144.
3 He Y Q, Zhang F L, Ma B,et al. Applied Surface Science, 2020, 517, 146187.
4 Zhang Q, Hu S Z, Li F Y, et al. Chemical Journal of Chinese Universities, 2016, 37(3), 521 (in Chinese).
张倩,胡绍争,李法云,等, 高等学校化学学报, 2016, 37(3), 521
5 Han C C, Zhang T, Cai Q J,et al. Journal of the American Ceramic Society, 2019, 102(9), 5484.
6 Lin L H, Yu Z Y, Wang X C. Angewandte Chemie International Edition, 2019, 58(19), 6164.
7 Li Y F, Zhou M H, Cheng B,et al. Journal of Materials Science & Technology, 2020, 56, 1.
8 He H, Cao J, Guo M N, et al. Applied Catalysis B: Environmental, 2019, 249, 246.
9 Li H J, Zhao J L, Geng Y,et al. Applied Surface Science, 2019, 496, 143738.
10 Sun Z C, Zhu M S, Fujitsuka M, et al. ACS Applied Mater & Interfaces, 2017, 9(36), 30583.
11 Shi J W, Zou Y J, Cheng L H,et al. Chemical Engineering Journal, 2019, 378, 122161.
12 Zhou Y L, Lin D Y, Ye X Y, et al. Journal of Alloys and Compounds, 2020, 839, 155691.
13 Nagaraja C M, Kaur M, Dhingra S, International Journal of Hydrogen Energy, 2020, 45(15), 8497.
14 Li Y J, Ding L, Guo Y C, et al. ACS Applied Materials & Interfaces, 2019, 11, 41440.
15 Liang Z Q, Yang S R, Wang X Y, et al. Applied Catalysis B: Environmental, 2020, 274, 119114.
16 Li H, Yan X Q, Lin B,et al. Nano Energy, 2018, 47, 481.
17 Dai D S, Xu H, Ge L,et al. Applied Catalysis B: Environmental, 2017, 217, 429.
18 Zhao C X, Tang H, Liu W,et al. ChemCatChem, 2019, 11(24), 6310.
19 Sun Z C, Zhu M S, Lv X S,et al. Applied Catalysis B: Environmental, 2019, 246, 330.
20 Guan Y, Hu S Z, Li P,et al. Nano, 2019, 14, 1950083.
21 Li C M, Wu H H, Hong S H,et al. International Journal of Hydrogen Energy, 2020, 45(43), 22556.
22 He Y N, Cui R J, Gao C C,et al. Molecular Catalysis, 2019, 469, 161.
23 Song M J, He Y, Zhang M M, et al. Journal of Power Sources, 2018, 402, 345.
24 Luo B, Song R, Geng X,et al. Applied Catalysis B: Environmental, 2019, 256, 117819.
25 Yuan Y J, Shen Z K, Song S X,et al. ACS Catalysis, 2019, 9(9), 7801.
26 Li S S, Wang L, Liu S, et al. ACS Sustainable Chemistry & Engineering, 2018, 6(8), 9940.
27 Zeng D Q, Ong W J, Chen Y Z,et al. Particle & Particle Systems Characterization, 2018, 35(1), 1700251.
28 Tian L, Qiu G F, Shen Y,et al. Industrial & Engineering Chemistry Research, 2019, 58(31), 14098.
29 Sun X J, Yang D D, Meng X B,et al. Sustainable Energy & Fuels, 2018, 2, 1356.
30 Cheng C, Zong S C, Shi J W, et al. Applied Catalysis B: Environmental, 2020, 265, 118620.
31 W L, Lu K C, Zhou S J,et al. Applied Surface Science, 2019, 474, 194.
32 Li C M, Wu H H, Hong S H, et al. International Journal of Hydrogen Energy, 2020, 45(43), 22556.
33 Liu X, Zhao Y X, Yang X F, et al. Applied Catalysis B: Environmental, 2020, 275, 119144.
34 Zhao C X, Tang H, Liu W, et al. ChemCatChem, 2019, 11(24),6310.
35 Li C M, Du Y H, Wang D P, et al. Advanced Functional Materials, 2017, 27(4), 1604328.
36 Liu Y Z, Zhang J Q, Li X J,et al. Energy & Fuels, 2019, 33, 11663.
37 Tian S H, Zhang C, Huang D L,et al. Chemical Engineering Journal, 2020, 389, 123423.
38 Wen P, Zhao K F, Li H, et al. Journal Materials Chemistry A, 2020, 8, 2995.
39 Fang X Y, Song J L, Pu T T, et al. International Journal of Hydrogen Energy, 2017, 42(47), 28183.
40 Qi K Z, Lv W X, Khan I,et al. Chinese Journal of Catalysis, 2020, 41(1), 114.
41 Li N, Ding Y X, Wu J J, et al. ACS Applied Mater & Interfaces, 2019, 11(25), 22297.
42 Zhang X Y, Fan X L, Wang X,et al. Colloids and Surfaces A: Physico Chemical and Engineering Aspects, 2020, 599, 12487.
[1] 郑健飞, 朱思龙, 聂龙辉. Cu2O/g-C3N4异质结光催化材料的研究进展[J]. 材料导报, 2021, 35(Z1): 33-41.
[2] 姜鹏程, 王周福, 王玺堂, 刘浩, 马妍. 不同气氛下类石墨相氮化碳的合成及热稳定性能[J]. 材料导报, 2021, 35(6): 6048-6053.
[3] 俞坤, 刘金香, 谢水波, 刘迎九, 葛玉杰. 聚吡咯/石墨相氮化碳复合材料吸附铀(Ⅵ)的性能与机制[J]. 材料导报, 2020, 34(23): 23020-23026.
[4] 李旭力, 王晓静, 赵君, 李玉佩, 李发堂, 陈学敏. 催化分解水制氢体系助催化剂研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1057-1064.
[5] 梁红玉, 邹赫, 胡绍争, 李建中, 田彦文. 二元碱金属共掺杂石墨相氮化碳的制备及光催化性能评价[J]. 材料导报, 2018, 32(24): 4217-4223.
[6] 王辉, 李士君, 王梅, 裴彦博, 胡绍争. 载银g-C3N4(Ⅰ)/g-C3N4(Ⅱ)同素异质结催化剂的制备及光催化固氮产氨性能[J]. 材料导报, 2018, 32(20): 3496-3503.
[7] 阎鑫, 惠小艳, 闫从祥, 艾涛, 苏兴华, 王振军, 孙国栋, 赵鹏. 类石墨相氮化碳二维纳米片的制备及可见光催化性能研究*[J]. CLDB, 2017, 31(9): 77-80.
[8] 娄冬冬, 张丽莎, 王海风, 陈志钢. 具有三维网状结构的石墨相氮化碳/还原氧化石墨烯/钯复合材料的合成及可见光催化性能*[J]. 《材料导报》期刊社, 2017, 31(20): 1-5.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed