Please wait a minute...
材料导报  2018, Vol. 32 Issue (24): 4217-4223    https://doi.org/10.11896/j.issn.1005-023X.2018.24.002
  无机非金属及其复合材料 |
二元碱金属共掺杂石墨相氮化碳的制备及光催化性能评价
梁红玉1, 邹赫1, 胡绍争1, 李建中2, 田彦文2
1 辽宁石油化工大学化学化工与环境学部,抚顺 113001;
2 东北大学冶金学院,沈阳 110819
Preparation of Alkali Metals Co-doped Graphitic Carbon Nitride by Molten Salt Method and Photocatalytic Performance
LIANG Hongyu1, ZOU He1, HU Shaozheng1, LI Jianzhong2, TIAN Yanwen2
1 College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun 113001;
2 School of Metallurgy, Northeastern University, Shenyang 110819
下载:  全 文 ( PDF ) ( 2067KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以三聚氰胺为母体、以双组分碱金属为熔盐制备了钾-钠共掺杂石墨型氮化碳(g-C3N4)光催化剂,并用X射线衍射光谱(XRD)、紫外可见光谱(UV-Vis)、N2吸附脱附、X光电子能谱(XPS)、荧光光谱(PL)等分析手段对产物进行了表征。结果表明,通过改变碱金属熔盐量,能将氮化碳价带(VB)能级从+1.55 V调控到+2.27 V、导带(CB)能级从-1.10 V调控到-0.27 V,同时碱金属的引入抑制了氮化碳晶粒的生长,降低了光生电子-空穴对的复合概率,提高了氮化碳的比表面积以及对可见光的吸收。以罗丹明B(RhB)为目标物研究了系列氮化碳在可见光驱动下的催化能力,实验结果表明,二元碱金属的掺入大大提高了催化剂降解和矿化罗丹明B的能力,并表现出良好的稳定性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁红玉
邹赫
胡绍争
李建中
田彦文
关键词:  石墨相氮化碳  碱金属  光催化  可见光    
Abstract: Alkali metals co-doped graphitic carbon nitride (g-C3N4) was prepared using melamine as precursor, KCl and NaCl as molten salts, and characterized by X-ray diffraction (XRD), N2 adsorption, UV-vis spectroscopy, X-ray photoelectron spectroscopy (XPS), and Photoluminescence (PL). By controlling the weight ratio of eutectic salts to melamine, the VB and CB potentials of prepared g-C3N4 could be tuned from +1.55 V and -1.10 V to +2.27 V and -0.27 V, respectively. Besides, the ions embedding inhibited the crystal growth, enhanced the separation rate of photo-generated electrons and holes, and enlarged the surface area. The catalytic abilities of products were investigated by photodegradation and mineralization of Rhodamine (RhB) under visibe light. The results showed that photocatalytic activity and stability of prepared catalysts were significantly improved after alkali metals doping.
Key words:  g-C3N4    alkali metal    photocatalysis    visible light
                    发布日期:  2019-01-23
ZTFLH:  O641  
  O649  
基金资助: 国家自然科学基金(51374053)
作者简介:  梁红玉:女,1969年生,博士,副教授,研究方向为层状材料(水滑石、石墨型氮化碳等)在绿色能源及环境工程中的应用 E-mail:lianghongyu163@163.com
引用本文:    
梁红玉, 邹赫, 胡绍争, 李建中, 田彦文. 二元碱金属共掺杂石墨相氮化碳的制备及光催化性能评价[J]. 材料导报, 2018, 32(24): 4217-4223.
LIANG Hongyu, ZOU He, HU Shaozheng, LI Jianzhong, TIAN Yanwen. Preparation of Alkali Metals Co-doped Graphitic Carbon Nitride by Molten Salt Method and Photocatalytic Performance. Materials Reports, 2018, 32(24): 4217-4223.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.24.002  或          http://www.mater-rep.com/CN/Y2018/V32/I24/4217
1 Chen X, Shen S, Guo L, et al. Semiconductor-based photocatalytic hydrogen generation[J].Chemical Reviews,2010,110(11):6503.
2 Wachs I E, Phivilay S P, Roberts C A. Reporting of reactivity for heterogeneous photocatalysis[J].ACS Catalysis,2014,3(3):2606.
3 Li C M, Liu H C, Xu H X. Progress in preparation and application of ZnO nano-material[J].Materials Review,2003,17(5):39(in Chinese).
李春明,刘会冲,徐华芯.纳米ZnO材料的制备与应用研究进展[J].材料导报,2003,17(5):39.
4 Yang K, Zhong D J, Xu Y L, et al. Research of dye wastewater treatment using N, F, Ce three doped TiO2/Ti electrodes[J].Chongqing University of Technology(Natural Science),2017,31(10):134(in Chinese).
杨开,钟登杰,徐云兰,等.N,F,Ce三掺杂TiO2/Ti光催化处理染料废水的研究[J].重庆理工大学学报(自然科学),2017,31(10):134.
5 Dou J F, Zou Z Y, Zheng Z G. Photochemical properties of nano-meter TiO2 and its application in enviromental science[J].Materials Review,2000,14(6):35(in Chinese).
豆俊峰,邹振扬,郑泽根.纳米TiO2的光化学特性及其在环境科学中的应用[J].材料导报,2000,14(6):35.
6 Maeda K, Domen K. Photocatalytic water splitting: Recent progress and future challenges[J].Journal of Physical Chemistry Letters,2010,1(18):2655.
7 Gong Y, Li M, Wang Y. Carbon nitride in energy conversion and storage: Recent advances and future prospects[J].Chemsuschem,2015,8(6):931.
8 Xiang Q, Yu J, Jaroniec M. Graphene-based semiconductor photocatalysts[J].Chemical Society Reviews,2012,41(2):782.
9 Yan S C, Li Z S, Zou Z G. Photodegradation performance of g-C3N4 fabricated by directly heating melamine[J].Langmuir the ACS Journal of Surfaces & Colloids,2009,25(17):10397.
10 Zheng Z, Zhou X. Metal-free oxidation of α-hydroxy ketones to 1,2-diketones catalyzed by mesoporous carbon nitride with visible light[J].Chinese Journal of Chemistry,2012,30(8):1683.
11 Liu G, Niu P, Sun C, et al. Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4[J].Journal of the American Chemical Society,2010,132(33):11642.
12 Lin Z, Wang X. Nanostructure engineering and doping of conjugated carbon nitride semiconductors for hydrogen photosynthesis[J].Angewandte Chemie,2013,52(6):1735.
13 Zhang H, Li S, Lu R, et al. Time-resolved study on xanthene dye-sensitized carbon nitride photocatalytic systems[J].ACS Applied Materials Interfaces,2015,7(39):21868.
14 Fu J, Tian Y, Chang B, et al. Biobr-carbon nitride heterojunctions: Synthesis, enhanced activity and photocatalytic mechanism[J].Journal of Materials Chemistry,2012,22(39):21159.
15 Volkov S V. Chemical reactions in molten salts and their classification[J].Chemical Society Reviews,1990,19(1):21.
16 Kerridge D H. Recent advances in molten salts as reaction media[J].Pure & Applied Chemistry,1975,41(3):355.
17 Liu X, Fechler N, Antonietti M. Salt melt synthesis of ceramics, semiconductors and carbon nanostructures[J].Cheminform,2013,42(21):8237.
18 Bojdys M J, Müller J O, Antonietti M, et al. Ionothermal synthesis of crystalline, condensed, graphitic carbon nitride[J].Chemistry,2008,14(27):8177.
19 Bhunia M K, Yamauchi K, Takanabe K. Harvesting solar light with crystalline carbon nitrides for efficient photocatalytic hydrogen evolution[J].Angewandte Chemie,2014,53(41):11001.
20 Zhang J, Wang B, Wang X. Carbon nitride polymeric semiconductor for photocatalysis[J].Progress in Chemistry,2014,26(1):19.
21 Pan C, Xu J, Wang Y, et al. Dramatic activity of C3N4/BiPO4 photocatalyst with core/shell structure formed by self-assembly[J].Advanced Functional Materials,2012,22(7):1518.
22 Wang X, Chen X, Thomas A, et al. Metal-containing carbon nitride compounds: A new functional organic-metal hybrid material[J].Advanced Materials,2009,21(16):1609.
23 Jorge A B, Martin D J, Dhanoa M T S, et al. H2 and O2 evolution from water half-splitting reactions by graphitic carbon nitride mate-rials[J].Journal of Physical Chemistry C,2013,117(14):7178.
24 Xu Y, Xu H, Wang L, et al. The CNT modified white C3N4 composite photocatalyst with enhanced visible-light response photoactivity[J].Dalton Transactions,2013,42(21):7604.
25 Zhang J, Zhang M, Zhang G, et al. Synthesis of carbon nitride semiconductors in sulfur flux for water photoredox catalysis[J].ACS Catalysis,2012,2(2):940.
26 Zhu B, Xia P, Ho W, et al. Isoelectric point and adsorption activity of porous g-C3N4[J].Applied Surface Science,2015,344:188.
27 Wang X, Blechert S, Antonietti M. Polymeric graphitic carbon nitride for heterogeneous photocatalysis[J].ACS Catalysis,2012,2(8):1596.
28 Zhang J, Chen X, Takanabe K, et al. Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization[J].Angewandte Chemie,2010,49(2):441.
29 Tao Y, Qian N, Wei M, et al. Metal-free activation of peroxymonosulfate by g-C3N4 under visible light irradiation for the degradation of organic dyes[J].RSC Advances,2015,5(55):185.
30 Wang X, Maeda K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J].Nature Materials,2009,8(1):76.
31 Zhang M, Xu J, Zong R, et al. Enhancement of visible light photocatalytic activities via porous structure of g-C3N4[J].Applied Catalysis B Environmental,2014,147(8):229.
32 Ge L, Han C, Liu J, et al. Enhanced visible light photocatalytic activity of novel polymeric g-C3N4 loaded with Ag nanoparticles[J].Applied Catalysis A General,2011,s409-410(23):215.
33 Hu R, Wang X, Dai S, et al. Application of graphitic carbon nitride for the removal of Pb(Ⅱ) and aniline from aqueous solutions[J].Chemical Engineering Journal,2015,260(3):469.
34 Wang Y S, Li M, Wang F, et al. Li and Na co-decorated carbon nitride nanotubes as promising new hydrogen storage media[J].Phy-sics Letters A,2012,376(4):631.
35 Gao H, Yan S, Wang J, et al. Towards efficient solar hydrogen production by intercalated carbon nitride photocatalyst[J].Physical Chemistry Chemical Physics Pccp,2013,15(41):18077.
36 Ma X, Lv Y, Xu J, et al. A strategy of enhancing the photoactivity of g-C3N4 via doping of nonmetal elements: A first-principles study[J].Journal of Physical Chemistry C,2016,116(44):23485.
[1] 郭继鹏, 王敬锋, 林琳, 何丹农. 不同形貌的g-C3N4的制备研究进展[J]. 材料导报, 2019, 33(z1): 1-7.
[2] 冉涛, 张骞, 黎邦鑫, 刘旸, 李筠连. g-C3N4/泡沫镍整体式光催化剂的构建及光氧化去除NO[J]. 材料导报, 2019, 33(z1): 337-342.
[3] 肖健, 刘锦平, 刘先斌, 邱贵宝. 泡沫钛表面改性研究进展[J]. 材料导报, 2019, 33(9): 1558-1566.
[4] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
[5] 熊德华, 邓砚文, 杜子娟, 张晴晴, 李宏. CuMnO2/TiO2复合光催化剂增效催化降解亚甲基蓝[J]. 材料导报, 2019, 33(8): 1262-1267.
[6] 张嘉羲, 袁欢, 刘禹彤, 陈雨, 徐明. Fe掺杂的Ag-ZnO纳米复合材料的合成及光催化性能[J]. 材料导报, 2019, 33(6): 941-946.
[7] 占昌朝, 曹小华, 金文雄, 叶志刚, 谢宝华, 徐建兴, 周荣辉. 以水杨酸为模板分子的Nd掺杂分子印迹TiO2的制备及光催化性能[J]. 材料导报, 2019, 33(6): 947-953.
[8] 吕斌, 程坤, 高党鸽, 马建中. 中空结构纳米TiO2微球的可控制备[J]. 材料导报, 2019, 33(5): 770-776.
[9] 王永强, 陈曦, 刘昕, 刘芳, 赵朝成, 姜珊, 吴鹏伟. MWCNT/Bi2WO6复合光催化剂的制备及其活性研究[J]. 材料导报, 2019, 33(2): 211-214.
[10] 涂盛辉, 徐翀, 戴策, 林立, 彭海龙, 杜军. 双金属纳米Ag/Cu负载TiO2的制备及光催化制氢活性[J]. 材料导报, 2019, 33(16): 2633-2637.
[11] 刘钊, 王纪孝, 孙亚伟. 硫酸掺杂聚苯胺涂层的快速表面光热杀菌性能[J]. 材料导报, 2019, 33(14): 2431-2435.
[12] 黄宁岸, 赵梓俨, 邹彦昭, 周莹. 表面处理对Pt/Al2O3光催化氧化NO的影响[J]. 材料导报, 2019, 33(12): 1921-1925.
[13] 安伟佳, 田玲玉, 芮玉兰, 高雅萌, 崔文权. Ag@AgCl/Bi2WO6复合光催化剂的制备及可见光催化性能[J]. 材料导报, 2019, 33(12): 1932-1938.
[14] 李雅明, 李艳军, 张江, 丛野, 崔正威, 袁观明, 董志军, 邹涛, 李轩科. K3V5O14的合成及光催化性能和吸附性能[J]. 材料导报, 2019, 33(12): 1926-1931.
[15] 樊启哲, 廖春发, 陈鑫, 张志文, 余长林. 通过热处理调控光催化剂性质的研究进展[J]. 材料导报, 2019, 33(11): 1853-1859.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed